-->
找到 203 个相关的AI工具
Upstage AI利用强大的大型语言模型和文档处理引擎,为企业转变工作流程和提升效率。其主要优点包括高精度、高性能、适用于各行业的定制解决方案。定位于为领先企业赋能,提升工作效率。
Seed-Coder 是字节跳动 Seed 团队推出的开源代码大型语言模型系列,包含基础、指令和推理模型,旨在通过最小的人力投入,自主管理代码训练数据,从而显著提升编程能力。该模型在同类开源模型中表现优越,适合于各种编码任务,定位于推动开源 LLM 生态的发展,适用于研究和工业界。
ZeroSearch 是一种新颖的强化学习框架,旨在激励大型语言模型(LLMs)的搜索能力,而无需与实际搜索引擎进行交互。通过监督微调,ZeroSearch 转变 LLM 为能够生成相关和无关文档的检索模块,并引入课程推出机制来逐步激发模型的推理能力。该技术的主要优点在于其性能优于基于真实搜索引擎的模型,同时产生的 API 成本为零。它适用于各种规模的 LLM,并支持不同的强化学习算法,适合需要高效检索能力的研究和开发团队。
NoteLLM 是一款专注于用户生成内容的可检索大型语言模型,旨在提升推荐系统的性能。通过将主题生成与嵌入生成相结合,NoteLLM 提高了对笔记内容的理解与处理能力。该模型采用了端到端的微调策略,适用于多模态输入,增强了在多样化内容领域的应用潜力。其重要性在于能够有效提升笔记推荐的准确性和用户体验,特别适用于小红书等 UGC 平台。
SWE-RL 是由 Facebook Research 提出的一种基于强化学习的大型语言模型推理技术,旨在利用开源软件演变数据提升模型在软件工程任务中的表现。该技术通过规则驱动的奖励机制,优化模型的推理能力,使其能够更好地理解和生成高质量的代码。SWE-RL 的主要优点在于其创新性的强化学习方法和对开源数据的有效利用,为软件工程领域带来了新的可能性。该技术目前处于研究阶段,尚未明确商业化定价,但其在提升开发效率和代码质量方面具有显著潜力。
Coding-Tutor是一个基于大型语言模型(LLM)的编程辅导工具,旨在通过对话式交互帮助学习者提升编程能力。它通过Trace-and-Verify(Traver)工作流,结合知识追踪和逐轮验证,解决编程辅导中的关键挑战。该工具不仅适用于编程教育,还可扩展到其他任务辅导场景,帮助根据学习者的知识水平调整教学内容。项目开源,支持社区贡献。
Goedel-Prover 是一款专注于自动化定理证明的开源大型语言模型。它通过将自然语言数学问题翻译为形式化语言(如 Lean 4),并生成形式化证明,显著提升了数学问题的自动化证明效率。该模型在 miniF2F 基准测试中达到了 57.6% 的成功率,超越了其他开源模型。其主要优点包括高性能、开源可扩展性以及对数学问题的深度理解能力。Goedel-Prover 旨在推动自动化定理证明技术的发展,并为数学研究和教育提供强大的工具支持。
OmniParser 是微软开发的一种先进的图像解析技术,旨在将不规则的屏幕截图转换为结构化的元素列表,包括可交互区域的位置和图标的功能描述。它通过深度学习模型,如 YOLOv8 和 Florence-2,实现了对 UI 界面的高效解析。该技术的主要优点在于其高效性、准确性和广泛的适用性。OmniParser 可以显著提高基于大型语言模型(LLM)的 UI 代理的性能,使其能够更好地理解和操作各种用户界面。它在多种应用场景中表现出色,如自动化测试、智能助手开发等。OmniParser 的开源特性和灵活的许可证使其成为开发者和研究人员的有力工具。
Mistral Small 24B 是一款由 Mistral AI 团队开发的大型语言模型,拥有 240 亿参数,支持多语言对话和指令处理。该模型通过指令微调,能够生成高质量的文本内容,适用于聊天、写作、编程辅助等多种场景。其主要优点包括强大的语言生成能力、多语言支持以及高效推理能力。该模型适合需要高性能语言处理的个人和企业用户,具有开源许可,支持本地部署和量化优化,适合对数据隐私有要求的场景。
DeepSeek-R1-Distill-Llama-70B 是由 DeepSeek 团队开发的一款大型语言模型,基于 Llama-70B 架构并通过强化学习进行优化。该模型在推理、对话和多语言任务中表现出色,支持多种应用场景,包括代码生成、数学推理和自然语言处理。其主要优点是高效的推理能力和对复杂问题的解决能力,同时支持开源和商业使用。该模型适用于需要高性能语言生成和推理能力的企业和研究机构。
InternVL2.5-MPO是一个基于InternVL2.5和混合偏好优化(MPO)的多模态大型语言模型系列。它在多模态任务中表现出色,通过整合新近增量预训练的InternViT与多种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型系列在多模态推理偏好数据集MMPR上进行了训练,包含约300万个样本,通过有效的数据构建流程和混合偏好优化技术,提升了模型的推理能力和回答质量。
SakanaAI/self-adaptive-llms是一个名为Transformer²的自适应框架,旨在解决传统微调方法计算密集且处理多样化任务能力静态的挑战。该框架能够在推理过程中通过两步机制实时调整大型语言模型(LLMs)以适应未见任务:首先,调度系统识别任务属性;然后,使用强化学习训练的任务特定'专家'向量被动态混合,以获得针对输入提示的目标行为。主要优点包括实时任务适应性、计算效率和灵活性。该项目由SakanaAI团队开发,目前在GitHub上开源,拥有195颗星和12次分叉。
InternLM3-8B-Instruct是InternLM团队开发的大型语言模型,具有卓越的推理能力和知识密集型任务处理能力。该模型在仅使用4万亿高质量词元进行训练的情况下,实现了比同级别模型低75%以上的训练成本,同时在多个基准测试中超越了Llama3.1-8B和Qwen2.5-7B等模型。它支持深度思考模式,能够通过长思维链解决复杂的推理任务,同时也具备流畅的用户交互能力。该模型基于Apache-2.0许可证开源,适用于需要高效推理和知识处理的各种应用场景。
Dria-Agent-a-3B是一个基于Qwen2.5-Coder系列的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,如Berkeley Function Calling Leaderboard (BFCL)、MMLU-Pro和Dria-Pythonic-Agent-Benchmark (DPAB)。模型大小为3.09B参数,支持BF16张量类型。
Dria-Agent-a-7B是一个基于Qwen2.5-Coder系列训练的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,与传统JSON函数调用方法相比,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,包括Berkeley Function Calling Leaderboard (BFCL)、MMLU-Pro和Dria-Pythonic-Agent-Benchmark (DPAB)。模型大小为76.2亿参数,采用BF16张量类型,支持文本生成任务。其主要优点包括强大的编程辅助能力、高效的函数调用方式以及在特定领域的高准确率。该模型适用于需要复杂逻辑处理和多步骤任务执行的应用场景,如自动化编程、智能代理等。目前,该模型在Hugging Face平台上提供,供用户免费使用。
Dria-Agent-α是Hugging Face推出的大型语言模型(LLM)工具交互框架。它通过Python代码来调用工具,与传统的JSON模式相比,能更充分地发挥LLM的推理能力,使模型能够以更接近人类自然语言的方式进行复杂问题的解决。该框架利用Python的流行性和接近伪代码的语法,使LLM在代理场景中表现更佳。Dria-Agent-α的开发使用了合成数据生成工具Dria,通过多阶段管道生成逼真的场景,训练模型进行复杂问题解决。目前已有Dria-Agent-α-3B和Dria-Agent-α-7B两个模型在Hugging Face上发布。
该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化(MPO)构建。该系列模型在多模态任务中表现出色,能够处理图像、文本和视频数据,并生成高质量的文本响应。模型采用'ViT-MLP-LLM'范式,通过像素unshuffle操作和动态分辨率策略优化视觉处理能力。此外,模型还引入了多图像和视频数据的支持,进一步扩展了其应用场景。InternVL2.5-MPO在多模态能力评估中超越了多个基准模型,证明了其在多模态领域的领先地位。
Agent Laboratory是一个由Samuel Schmidgall等人开发的项目,旨在通过大型语言模型驱动的专门代理,帮助研究人员完成从文献综述到实验执行再到报告撰写的整个研究流程。它不是为了取代人类的创造力,而是为了补充创造力,使研究人员能够专注于构思和批判性思维,同时自动化编码和文档等重复性和耗时的任务。该工具的源代码采用MIT许可证,允许在遵守MIT许可证条款的情况下使用、修改和分发代码。
InternVL2_5-26B-MPO-AWQ 是由 OpenGVLab 开发的多模态大型语言模型,旨在通过混合偏好优化提升模型的推理能力。该模型在多模态任务中表现出色,能够处理图像和文本之间的复杂关系。它采用了先进的模型架构和优化技术,使其在多模态数据处理方面具有显著优势。该模型适用于需要高效处理和理解多模态数据的场景,如图像描述生成、多模态问答等。其主要优点包括强大的推理能力和高效的模型架构。
AnyParser Pro 是由 CambioML 开发的一款创新的文档解析工具,它利用大型语言模型(LLM)技术,能够快速准确地从 PDF、PPT 和图像文件中提取出完整的文本内容。该技术的主要优点在于其高效的处理速度和高精度的解析能力,能够显著提高文档处理的效率。AnyParser Pro 的背景信息显示,它是由 Y Combinator 孵化的初创公司 CambioML 推出的,旨在为用户提供一种简单易用且功能强大的文档解析解决方案。目前,该产品提供免费试用,用户可以通过获取 API 密钥来访问其功能。
Sonus-1是Sonus AI推出的一系列大型语言模型(LLMs),旨在推动人工智能的边界。这些模型以其高性能和多应用场景的多功能性而设计,包括Sonus-1 Mini、Sonus-1 Air、Sonus-1 Pro和Sonus-1 Pro (w/ Reasoning)等不同版本,以满足不同需求。Sonus-1 Pro (w/ Reasoning)在多个基准测试中表现突出,特别是在推理和数学问题上,展现了其超越其他专有模型的能力。Sonus AI致力于开发高性能、可负担、可靠且注重隐私的大型语言模型。
InternVL2_5-26B-MPO是一个多模态大型语言模型(MLLM),它在InternVL2.5的基础上,通过混合偏好优化(Mixed Preference Optimization, MPO)进一步提升了模型性能。该模型能够处理包括图像、文本在内的多模态数据,广泛应用于图像描述、视觉问答等场景。它的重要性在于能够理解和生成与图像内容紧密相关的文本,推动了多模态人工智能的边界。产品背景信息包括其在多模态任务中的卓越性能,以及在OpenCompass Learderboard中的评估结果。该模型为研究者和开发者提供了强大的工具,以探索和实现多模态人工智能的潜力。
InternVL2_5-8B-MPO-AWQ是OpenGVLab推出的一款多模态大型语言模型,它基于InternVL2.5系列,并采用混合偏好优化(Mixed Preference Optimization, MPO)技术。该模型在视觉和语言的理解与生成方面展现了卓越的性能,尤其在多模态任务中表现出色。它通过结合视觉部分InternViT和语言部分InternLM或Qwen,使用随机初始化的MLP投影器进行增量预训练,实现了对图像和文本的深入理解与交互。该技术的重要性在于它能够处理包括单图像、多图像以及视频数据在内的多种数据类型,为多模态人工智能领域提供了新的解决方案。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,它基于InternVL2.5和混合偏好优化构建。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在新版本中保留了与InternVL 2.5及其前身相同的模型架构,遵循“ViT-MLP-LLM”范式。该模型支持多图像和视频数据,通过混合偏好优化(MPO)进一步提升模型性能,使其在多模态任务中表现更优。
HuatuoGPT-o1-8B 是一个专为高级医疗推理设计的医疗领域大型语言模型(LLM)。它在提供最终响应之前会生成一个复杂的思考过程,反映并完善其推理过程。该模型基于LLaMA-3.1-8B构建,支持英文,并且采用'thinks-before-it-answers'的方法,输出格式包括推理过程和最终响应。此模型在医疗领域具有重要意义,因为它能够处理复杂的医疗问题并提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。
HuatuoGPT-o1是一个专为医疗复杂推理设计的大语言模型,能够识别错误、探索替代策略并完善答案。该模型通过利用可验证的医疗问题和专门的医疗验证器,推进了复杂推理的发展。HuatuoGPT-o1的主要优点包括:使用验证器指导复杂推理轨迹的搜索,以微调大型语言模型;应用基于验证器奖励的强化学习(PPO)进一步提升复杂推理能力。HuatuoGPT-o1的开源模型、数据和代码,使其在医疗教育和研究领域具有重要价值。
InternVL2_5-4B-MPO-AWQ是一个多模态大型语言模型(MLLM),专注于提升模型在图像和文本交互任务中的表现。该模型基于InternVL2.5系列,并通过混合偏好优化(MPO)进一步提升性能。它能够处理包括单图像和多图像、视频数据在内的多种输入,适用于需要图像和文本交互理解的复杂任务。InternVL2_5-4B-MPO-AWQ以其卓越的多模态能力,为图像-文本到文本的任务提供了一个强大的解决方案。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化构建。该模型集成了新增量预训练的InternViT和各种预训练的大型语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。它支持多图像和视频数据,并且在多模态任务中表现出色,能够理解和生成与图像相关的文本内容。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
InternVL2_5-1B-MPO是一个多模态大型语言模型(MLLM),它基于InternVL2.5和混合偏好优化(MPO)构建,展示了优越的整体性能。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在模型架构上保留了与InternVL 2.5及其前身相同的“ViT-MLP-LLM”范式,并引入了对多图像和视频数据的支持。该模型在多模态任务中表现出色,能够处理包括图像描述、视觉问答等多种视觉语言任务。
ExploreToM是由Facebook Research开发的一个框架,旨在大规模生成多样化和具有挑战性的心理理论数据,用于强化大型语言模型(LLMs)的训练和评估。该框架利用A*搜索算法在自定义的领域特定语言上生成复杂的故事结构和新颖、多样化且合理的情景,以测试LLMs的极限。
EXAONE-3.5-32B-Instruct-GGUF是LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,包含2.4B至32B参数的不同版本。这些模型支持长达32K令牌的长上下文处理,展现了在真实世界用例和长上下文理解中的最前沿性能,同时在与近期发布的类似规模模型相比,在通用领域保持竞争力。该模型系列通过技术报告、博客和GitHub提供了详细信息,并且包含了多种精度的指令调优32B语言模型,具有以下特点:参数数量(不含嵌入)为30.95B,层数为64,注意力头数为GQA,包含40个Q头和8个KV头,词汇量为102,400,上下文长度为32,768令牌,量化包括Q8_0、Q6_0、Q5_K_M、Q4_K_M、IQ4_XS等GGUF格式(也包括BF16权重)。
CosyVoice 2是由阿里巴巴集团的SpeechLab@Tongyi团队开发的语音合成模型,它基于监督离散语音标记,并结合了两种流行的生成模型:语言模型(LMs)和流匹配,实现了高自然度、内容一致性和说话人相似性的语音合成。该模型在多模态大型语言模型(LLMs)中具有重要的应用,特别是在交互体验中,响应延迟和实时因素对语音合成至关重要。CosyVoice 2通过有限标量量化提高语音标记的码本利用率,简化了文本到语音的语言模型架构,并设计了块感知的因果流匹配模型以适应不同的合成场景。它在大规模多语言数据集上训练,实现了与人类相当的合成质量,并具有极低的响应延迟和实时性。
Command R7B是Cohere公司推出的一款高性能、可扩展的大型语言模型(LLM),专为企业级应用设计。它在保持较小模型体积的同时,提供了一流的速度、效率和质量,能够在普通的GPU、边缘设备甚至CPU上部署,大幅降低了AI应用的生产部署成本。Command R7B在多语言支持、引用验证检索增强生成(RAG)、推理、工具使用和代理行为等方面表现出色,特别适合需要优化速度、成本性能和计算资源的企业使用案例。
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
InternVL2_5-4B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上进行了核心模型架构的维护,并在训练和测试策略以及数据质量上进行了显著增强。该模型在处理图像、文本到文本的任务中表现出色,特别是在多模态推理、数学问题解决、OCR、图表和文档理解等方面。作为开源模型,它为研究人员和开发者提供了强大的工具,以探索和构建基于视觉和语言的智能应用。
MLPerf Client是由MLCommons共同开发的新基准测试,旨在评估个人电脑(从笔记本、台式机到工作站)上大型语言模型(LLMs)和其他AI工作负载的性能。该基准测试通过模拟真实世界的AI任务,提供清晰的指标,以了解系统如何处理生成性AI工作负载。MLPerf Client工作组希望这个基准测试能够推动创新和竞争,确保个人电脑能够应对AI驱动的未来挑战。
InternVL 2.5 是一个先进的多模态大型语言模型系列,它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,维持了其核心模型架构。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5 支持多图像和视频数据,具备动态高分辨率训练方法,能够在处理多模态数据时提供更好的性能。
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,保持了其核心模型架构。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5支持多图像和视频数据,通过动态高分辨率训练方法,增强了模型处理多模态数据的能力。
InternVL2_5-8B是由OpenGVLab开发的一款多模态大型语言模型(MLLM),它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型采用'ViT-MLP-LLM'架构,集成了新增量预训练的InternViT与多种预训练语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP projector。InternVL 2.5系列模型在多模态任务上展现出卓越的性能,包括图像和视频理解、多语言理解等。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
InternVL 2.5是OpenGVLab推出的多模态大型语言模型系列,它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型系列能够处理图像、文本和视频数据,具备多模态理解和生成的能力,是当前多模态人工智能领域的前沿产品。InternVL 2.5系列模型以其高性能和开源特性,为多模态任务提供了强大的支持。
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型系列在视觉感知和多模态能力方面进行了优化,支持包括图像、文本到文本的转换在内的多种功能,适用于需要处理视觉和语言信息的复杂任务。
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
Sandbox Fusion是一个多功能代码沙箱,专为大型语言模型(LLMs)设计。它支持多达20种编程语言,能够全面测试包括编程、数学和硬件编程在内的多个领域。Sandbox Fusion集成了超过10个与编码相关的评估数据集,这些数据集具有标准化的数据格式,并且可以通过统一的HTTP API访问。此外,Sandbox Fusion针对云基础设施部署进行了优化,并在有特权容器时提供内置的安全隔离。产品背景信息显示,Sandbox Fusion由字节跳动有限公司开发,旨在为开发者提供一个安全、高效的代码测试环境。
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
Star-Attention是NVIDIA提出的一种新型块稀疏注意力机制,旨在提高基于Transformer的大型语言模型(LLM)在长序列上的推理效率。该技术通过两个阶段的操作显著提高了推理速度,同时保持了95-100%的准确率。它与大多数基于Transformer的LLM兼容,无需额外训练或微调即可直接使用,并且可以与其他优化方法如Flash Attention和KV缓存压缩技术结合使用,进一步提升性能。
Mistral-Large-Instruct-2411是由Mistral AI提供的一款具有123B参数的大型语言模型,它在推理、知识、编码等方面具有最先进的能力。该模型支持多种语言,并在80多种编程语言上进行了训练,包括但不限于Python、Java、C、C++等。它以代理为中心,具备原生函数调用和JSON输出能力,是进行科研和开发的理想选择。
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
Nous Chat是AI研究组织Nous Research推出的首款面向用户的聊天机器人,它提供了对大型语言模型Hermes 3-70B的访问权限。Hermes 3-70B是Meta的Llama 3.1的一个变体,经过微调后,以ChatGPT等流行AI聊天工具的形式提供服务。该聊天机器人以其复古的设计语言和早期PC终端的字体和字符为特色,提供暗色和亮色模式供用户选择。尽管Nous Chat旨在允许用户部署和控制自己的AI模型,但它实际上设置了一些防护措施,包括禁止制造非法药物。此外,该模型的知识截止日期为2023年4月,因此在获取最新事件方面可能不如其他竞争对手有用。尽管如此,Nous Chat是一个有趣的实验,随着新功能的添加,它可能成为企业聊天机器人和AI模型的一个有吸引力的替代品。
Agora是一个简单的跨平台协议,允许异构的大型语言模型(LLMs)通过谈判高效地相互通信。该协议通过自然语言进行罕见通信,并为频繁通信协商出一种通信协议,通常涉及结构化数据(例如JSON)。一旦协议确定,它们将使用LLMs实现例程,即简单的脚本(例如Python),用于发送或接收数据。未来通信将使用这些例程处理,这意味着不再需要LLMs,从而实现了效率、多功能性和可移植性。
PPLLaVA是一个高效的视频大型语言模型,它结合了细粒度视觉提示对齐、用户指令的卷积风格池化的视觉令牌压缩以及CLIP上下文扩展。该模型在VideoMME、MVBench、VideoChatGPT Bench和VideoQA Bench等数据集上建立了新的最先进结果,仅使用1024个视觉令牌,吞吐量提高了8倍。
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
O1-Journey是由上海交通大学GAIR研究组发起的一个项目,旨在复制和重新想象OpenAI的O1模型的能力。该项目提出了“旅程学习”的新训练范式,并构建了首个成功整合搜索和学习在数学推理中的模型。这个模型通过试错、纠正、回溯和反思等过程,成为处理复杂推理任务的有效方法。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
URL Parser Online是一个在线工具,它能够将复杂的URL转换为适合大型语言模型(LLMs)使用的输入格式。这项技术的重要性在于它能够帮助开发者和研究人员更有效地处理和解析URL数据,尤其是在进行网页内容分析和数据抽取时。产品背景信息显示,随着互联网数据量的爆炸式增长,对URL的解析和处理需求日益增加。URL Parser Online以其简洁的用户界面和高效的解析能力,为用户提供了一个便捷的解决方案。该产品目前提供免费服务,定位于开发者和数据分析师。
SELA是一个创新系统,它通过将蒙特卡洛树搜索(MCTS)与基于大型语言模型(LLM)的代理结合起来,增强了自动化机器学习(AutoML)。传统的AutoML方法经常产生低多样性和次优的代码,限制了它们在模型选择和集成方面的有效性。SELA通过将管道配置表示为树,使代理能够智能地探索解决方案空间,并根据实验反馈迭代改进其策略。
LongVU是一种创新的长视频语言理解模型,通过时空自适应压缩机制减少视频标记的数量,同时保留长视频中的视觉细节。这一技术的重要性在于它能够处理大量视频帧,且在有限的上下文长度内仅损失少量视觉信息,显著提升了长视频内容理解和分析的能力。LongVU在多种视频理解基准测试中均超越了现有方法,尤其是在理解长达一小时的视频任务上。此外,LongVU还能够有效地扩展到更小的模型尺寸,同时保持最先进的视频理解性能。
BitNet是由微软开发的官方推理框架,专为1位大型语言模型(LLMs)设计。它提供了一套优化的核心,支持在CPU上进行快速且无损的1.58位模型推理(NPU和GPU支持即将推出)。BitNet在ARM CPU上实现了1.37倍到5.07倍的速度提升,能效比提高了55.4%到70.0%。在x86 CPU上,速度提升范围从2.37倍到6.17倍,能效比提高了71.9%到82.2%。此外,BitNet能够在单个CPU上运行100B参数的BitNet b1.58模型,实现接近人类阅读速度的推理速度,拓宽了在本地设备上运行大型语言模型的可能性。
Llama-3.1-Nemotron-70B-Instruct是NVIDIA定制的大型语言模型,专注于提升大型语言模型(LLM)生成回答的帮助性。该模型在多个自动对齐基准测试中表现优异,例如Arena Hard、AlpacaEval 2 LC和GPT-4-Turbo MT-Bench。它通过使用RLHF(特别是REINFORCE算法)、Llama-3.1-Nemotron-70B-Reward和HelpSteer2-Preference提示在Llama-3.1-70B-Instruct模型上进行训练。此模型不仅展示了NVIDIA在提升通用领域指令遵循帮助性方面的技术,还提供了与HuggingFace Transformers代码库兼容的模型转换格式,并可通过NVIDIA的build平台进行免费托管推理。
ComfyGen 是一个专注于文本到图像生成的自适应工作流系统,它通过学习用户提示来自动化并定制有效的工作流。这项技术的出现,标志着从使用单一模型到结合多个专业组件的复杂工作流的转变,旨在提高图像生成的质量。ComfyGen 背后的主要优点是能够根据用户的文本提示自动调整工作流,以生成更高质量的图像,这对于需要生成特定风格或主题图像的用户来说非常重要。
Ministral-8B-Instruct-2410是由Mistral AI团队开发的一款大型语言模型,专为本地智能、设备端计算和边缘使用场景设计。该模型在类似的大小模型中表现优异,支持128k上下文窗口和交错滑动窗口注意力机制,能够在多语言和代码数据上进行训练,支持函数调用,词汇量达到131k。Ministral-8B-Instruct-2410模型在各种基准测试中表现出色,包括知识与常识、代码与数学以及多语言支持等方面。该模型在聊天/竞技场(gpt-4o判断)中的性能尤为突出,能够处理复杂的对话和任务。
MM1.5是一系列多模态大型语言模型(MLLMs),旨在增强文本丰富的图像理解、视觉指代表明和接地以及多图像推理的能力。该模型基于MM1架构,采用以数据为中心的模型训练方法,系统地探索了整个模型训练生命周期中不同数据混合的影响。MM1.5模型从1B到30B参数不等,包括密集型和混合专家(MoE)变体,并通过广泛的实证研究和消融研究,提供了详细的训练过程和决策见解,为未来MLLM开发研究提供了宝贵的指导。
Lumigator 是 Mozilla.ai 开发的一款产品,旨在帮助开发者从众多大型语言模型(LLM)中选择最适合其特定项目的模型。它通过提供任务特定的指标框架来评估模型,确保所选模型能够满足项目需求。Lumigator 的愿景是成为一个开源平台,促进道德和透明的AI开发,并填补行业工具链中的空白。
Tilores Identity RAG 是一个为大型语言模型(LLMs)提供客户数据搜索、统一和检索服务的平台。它通过实时模糊搜索技术,处理拼写错误和不准确信息,提供准确、相关且统一的客户数据响应。该平台解决了大型语言模型在检索结构化客户数据时面临的挑战,如数据来源分散、搜索词不完全匹配时难以找到客户数据,以及统一客户记录的复杂性。它允许快速检索结构化客户数据,构建动态客户档案,并在查询时提供实时统一且准确的客户数据。
NVLM 1.0是NVIDIA ADLR推出的前沿级多模态大型语言模型系列,它在视觉-语言任务上达到了业界领先水平,与顶级专有模型和开放访问模型相媲美。该模型在多模态训练后,甚至在纯文本任务上的准确性上也有所提高。NVLM 1.0的开源模型权重和Megatron-Core训练代码为社区提供了宝贵的资源。
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
Diabetica-7B是一个针对糖尿病护理领域优化的大型语言模型。它在糖尿病相关的多种任务上表现出色,包括诊断、治疗建议、药物管理、生活方式建议、患者教育等。该模型基于开源模型进行微调,使用特定疾病数据集和微调技术,提供了一个可复现的框架,可以加速AI辅助医疗的发展。此外,它还经过了全面的评估和临床试验,以验证其在临床应用中的有效性。
Diabetica-1.5B是一个为糖尿病护理领域特别定制的大型语言模型,它在诊断、治疗建议、药物管理、生活方式建议、患者教育等多个与糖尿病相关的任务中表现出色。该模型基于开源模型开发,并利用特定疾病数据集进行微调,提供了一个可复现的框架,可以加速AI辅助医疗的发展。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
觅识AI社区是一个专注于人工智能与产品管理领域的知识社区,提供AI产品管理的相关知识体系和研发产品用例。社区成员有机会成为'超级个体和一人公司'。可通过邮件或社交媒体与主理人联系,加入AI PM社区。
NVLM 1.0是一系列前沿级的多模态大型语言模型(LLMs),在视觉-语言任务上取得了与领先专有模型和开放访问模型相媲美的先进成果。值得注意的是,NVLM 1.0在多模态训练后,其文本性能甚至超过了其LLM主干模型。我们为社区开源了模型权重和代码。
OneGen是一个为大型语言模型(LLMs)设计的高效单遍生成和检索框架,用于微调生成、检索或混合任务。它的核心思想是将生成和检索任务整合到同一上下文中,通过将检索任务分配给以自回归方式生成的检索令牌,使得LLM能够在单次前向传递中执行两种任务。这种方法不仅降低了部署成本,还显著减少了推理成本,因为它避免了对查询进行两次前向传递计算的需求。
Open Source LLM Tools是一个专注于收集和展示开源大型语言模型(LLM)工具的平台。它提供了一个更新频繁的资源库,帮助开发者和研究者发现和利用最新的开源AI工具。该平台的主要优点在于其高更新频率和对活跃开源AI开发者的聚焦,使得用户能够及时获取到行业的最新动态和技术进展。
XVERSE-MoE-A36B是由深圳元象科技自主研发的多语言大型语言模型,采用混合专家模型(MoE)架构,具有2554亿的总参数规模和360亿的激活参数量。该模型支持包括中、英、俄、西等40多种语言,特别在中英双语上表现优异。模型使用8K长度的训练样本,并通过精细化的数据采样比例和动态数据切换策略,保证了模型的高质量和多样性。此外,模型还针对MoE架构进行了定制优化,提升了计算效率和整体吞吐量。
the Shire是一种AI编程智能体语言,旨在实现大型语言模型(LLM)与集成开发环境(IDE)之间的通信,以支持自动化编程。它起源于AutoDev项目,旨在为开发者提供一个AI驱动的IDE,包括DevIns,Shire的前身。Shire通过提供定制化的AI代理,使用户能够构建符合个人需求的AI驱动开发环境。
PromptChainer 是一个旨在提高大型语言模型输出质量的工具,通过自动化提示链的生成,帮助用户将复杂任务分解成可管理的小步骤,从而获得更精确和高质量的结果。它特别适合需要多步骤和/或大量上下文和知识的任务。
LongCite是一个开源的模型,它通过训练大型语言模型(LLMs)来实现在长文本问答场景中生成准确的回答和精确的句级引用。该技术的重要性在于它能够提高问答系统的准确性和可信度,使用户能够验证输出信息的来源。LongCite支持高达128K的上下文长度,并且提供了两个模型:LongCite-glm4-9b和LongCite-llama3.1-8b,分别基于GLM-4-9B和Meta-Llama-3.1-8B进行训练。
LongLLaVA是一个多模态大型语言模型,通过混合架构高效扩展至1000图像,旨在提升图像处理和理解能力。该模型通过创新的架构设计,实现了在大规模图像数据上的有效学习和推理,对于图像识别、分类和分析等领域具有重要意义。
iText2KG是一个Python包,旨在利用大型语言模型从文本文档中提取实体和关系,增量构建一致的知识图谱。它具备零样本能力,允许在没有特定训练的情况下跨不同领域进行知识提取。该包包括文档蒸馏、实体提取和关系提取模块,确保实体和关系得到解决和唯一性。它通过Neo4j提供知识图谱的可视化表示,支持交互式探索和分析结构化数据。
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
ChatMLX是一款现代、开源、高性能的MacOS聊天应用程序,基于大型语言模型构建。它利用MLX的强大性能和苹果硅芯片,支持多种模型,为用户提供丰富的对话选择。ChatMLX在本地运行大型语言模型,以确保用户隐私和安全。
C4AI Command R 08-2024是由Cohere和Cohere For AI开发的35亿参数大型语言模型,专为推理、总结和问答等多种用例优化。该模型支持23种语言的训练,并在10种语言中进行了评估,具有高性能的RAG(检索增强生成)能力。它通过监督式微调和偏好训练,以符合人类对有用性和安全性的偏好。此外,该模型还具备对话工具使用能力,能够通过特定的提示模板生成基于工具的响应。
EAGLE是一个面向视觉中心的高分辨率多模态大型语言模型(LLM)系列,通过混合视觉编码器和不同输入分辨率来加强多模态LLM的感知能力。该模型包含基于通道连接的'CLIP+X'融合,适用于具有不同架构(ViT/ConvNets)和知识(检测/分割/OCR/SSL)的视觉专家。EAGLE模型家族支持超过1K的输入分辨率,并在多模态LLM基准测试中取得了优异的成绩,特别是在对分辨率敏感的任务上,如光学字符识别和文档理解。
SlowFast-LLaVA是一个无需训练的多模态大型语言模型,专为视频理解和推理设计。它无需在任何数据上进行微调,就能在多种视频问答任务和基准测试中达到与最先进视频大型语言模型相当甚至更好的性能。
mPLUG-Owl3是一个多模态大型语言模型,专注于长图像序列的理解。它能够从检索系统中学习知识,与用户进行图文交替对话,并观看长视频,记住其细节。模型的源代码和权重已在HuggingFace上发布,适用于视觉问答、多模态基准测试和视频基准测试等场景。
Seed-ASR是由字节跳动公司开发的基于大型语言模型(Large Language Model, LLM)的语音识别模型。它通过将连续的语音表示和上下文信息输入到LLM中,利用LLM的能力,在大规模训练和上下文感知能力的引导下,显著提高了在包括多个领域、口音/方言和语言的综合评估集上的表现。与最近发布的大型ASR模型相比,Seed-ASR在中英文公共测试集上实现了10%-40%的词错误率降低,进一步证明了其强大的性能。
Parsera是一个轻量级的Python库,专门设计用于与大型语言模型(LLMs)结合,以简化网站数据抓取的过程。它通过使用最少的令牌来提高速度并降低成本,使得数据抓取变得更加高效和经济。Parsera支持多种聊天模型,并且可以自定义使用不同的模型,如OpenAI或Azure。
ShieldGemma是由Google开发的一系列基于Gemma 2构建的安全内容审核模型,专注于四个危害类别(儿童不宜内容、危险内容、仇恨和骚扰)。它们是文本到文本的解码器仅大型语言模型,仅包含英文版本,具有开放权重,包括2B、9B和27B参数大小的模型。这些模型旨在作为负责任的生成AI工具包的一部分,提高AI应用的安全性。
nanoPerplexityAI是一个开源的实现,它是一个大型语言模型(LLM)服务,引用Google的信息。没有复杂的GUI或LLM代理,只有100行Python代码。
CLASI是一个由字节跳动研究团队开发的高质量、类人同声传译系统。它通过新颖的数据驱动读写策略平衡翻译质量和延迟,采用多模态检索模块来增强特定领域术语的翻译,利用大型语言模型(LLMs)生成容错翻译,考虑输入音频、历史上下文和检索信息。在真实世界场景中,CLASI在中英和英中翻译方向上分别达到了81.3%和78.0%的有效信息比例(VIP),远超其他系统。