-->
找到 53 个相关的AI工具
Veo 4是一款AI视频生成平台,提供完整的视频生成套件,能够将文本和图片转化为高质量视频,具有多种功能,包括文本到视频生成、自然语言处理、高分辨率输出等。Veo 4通过AI技术革新了视频编辑和增强,带来高效的视频生成工作流。
Wan 2.1 AI 是由阿里巴巴开发的开源大规模视频生成 AI 模型。它支持文本到视频(T2V)和图像到视频(I2V)的生成,能够将简单的输入转化为高质量的视频内容。该模型在视频生成领域具有重要意义,能够极大地简化视频创作流程,降低创作门槛,提高创作效率,为用户提供丰富多样的视频创作可能性。其主要优点包括高质量的视频生成效果、复杂动作的流畅展现、逼真的物理模拟以及丰富的艺术风格等。目前该产品已完全开源,用户可以免费使用其基础功能,对于有视频创作需求但缺乏专业技能或设备的个人和企业来说,具有很高的实用价值。
Wan2GP 是基于 Wan2.1 的改进版本,旨在为低配置 GPU 用户提供高效、低内存占用的视频生成解决方案。该模型通过优化内存管理和加速算法,使得普通用户也能在消费级 GPU 上快速生成高质量的视频内容。它支持多种任务,包括文本到视频、图像到视频、视频编辑等,同时具备强大的视频 VAE 架构,能够高效处理 1080P 视频。Wan2GP 的出现降低了视频生成技术的门槛,使得更多用户能够轻松上手并应用于实际场景。
Wan2.1-T2V-14B 是一款先进的文本到视频生成模型,基于扩散变换器架构,结合了创新的时空变分自编码器(VAE)和大规模数据训练。它能够在多种分辨率下生成高质量的视频内容,支持中文和英文文本输入,并在性能和效率上超越现有的开源和商业模型。该模型适用于需要高效视频生成的场景,如内容创作、广告制作和视频编辑等。目前该模型在 Hugging Face 平台上免费提供,旨在推动视频生成技术的发展和应用。
FlashVideo 是一款专注于高效高分辨率视频生成的深度学习模型。它通过分阶段的生成策略,首先生成低分辨率视频,再通过增强模型提升至高分辨率,从而在保证细节的同时显著降低计算成本。该技术在视频生成领域具有重要意义,尤其是在需要高质量视觉内容的场景中。FlashVideo 适用于多种应用场景,包括内容创作、广告制作和视频编辑等。其开源性质使得研究人员和开发者可以灵活地进行定制和扩展。
Magic 1-For-1 是一个专注于高效视频生成的模型,其核心功能是将文本和图像快速转换为视频。该模型通过将文本到视频的生成任务分解为文本到图像和图像到视频两个子任务,优化了内存使用并减少了推理延迟。其主要优点包括高效性、低延迟和可扩展性。该模型由北京大学 DA-Group 团队开发,旨在推动交互式基础视频生成领域的发展。目前该模型及相关代码已开源,用户可以免费使用,但需遵守开源许可协议。
STAR是一种创新的视频超分辨率技术,通过将文本到视频扩散模型与视频超分辨率相结合,解决了传统GAN方法中存在的过度平滑问题。该技术不仅能够恢复视频的细节,还能保持视频的时空一致性,适用于各种真实世界的视频场景。STAR由南京大学、字节跳动等机构联合开发,具有较高的学术价值和应用前景。
ClipVideo AI是一个专业的AI视频生成平台,它利用人工智能技术将照片或简单的文本提示转换成引人入胜的视频。该平台以其快速的视频生成工具、企业级的安全性和支持、以及被众多团队信赖而著称。ClipVideo AI提供了从基础到专业的不同定价计划,满足不同用户的需求。
这是一个视频变分自编码器(VAE),旨在减少视频冗余并促进高效视频生成。该模型通过观察发现,将图像VAE直接扩展到3D VAE会引入运动模糊和细节失真,因此提出了时间感知的空间压缩以更好地编码和解码空间信息。此外,该模型还集成了一个轻量级的运动压缩模型以实现进一步的时间压缩。通过利用文本到视频数据集中固有的文本信息,并在模型中加入文本指导,显著提高了重建质量,特别是在细节保留和时间稳定性方面。该模型还通过在图像和视频上进行联合训练来提高其通用性,不仅提高了重建质量,还使模型能够执行图像和视频的自编码。广泛的评估表明,该方法的性能优于最近的强基线。
Zebracat是一个利用人工智能技术,帮助用户将文本、博客内容快速转换成专业视频的平台。它通过AI视频生成器,提供文本到视频、博客到视频、AI场景生成等功能,极大地简化了视频制作流程,提高了内容创作的效率。Zebracat的主要优点包括快速生成视频、无需专业编辑技能、支持多种语言和AI配音,以及提供高影响力的营销视频。产品背景信息显示,Zebracat受到超过50,000名AI创作者的喜爱,并在Product Hunt上获得高度评价。
Pollo AI是一个创新的AI视频生成器,它允许用户轻松创建令人惊叹的视频。用户可以通过简单的文本提示或静态图片,快速生成具有特定风格和内容的视频。Pollo AI以其用户友好的界面、广泛的定制选项和高质量的输出而脱颖而出,是初学者和经验丰富的创作者的首选。它不仅支持文本到视频的生成,还可以根据图片内容和用户需求生成视频,拥有多种模板,包括AI拥抱视频生成器,可以轻松制作温馨感人的拥抱视频。Pollo AI以其快速的视频生成能力、高质量的输出和无需技术视频编辑技能即可使用的易用性,为用户提供了无限的创作可能性。
ConsisID是一个基于频率分解的身份保持文本到视频生成模型,它通过在频域中使用身份控制信号来生成与输入文本描述一致的高保真度视频。该模型不需要针对不同案例进行繁琐的微调,并且能够保持生成视频中人物身份的一致性。ConsisID的提出,推动了视频生成技术的发展,特别是在无需调整的流程和频率感知的身份保持控制方案方面。
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
Pyramid Flow miniFLUX是一个基于流匹配的自回归视频生成方法,专注于训练效率和开源数据集的使用。该模型能够生成高质量的10秒768p分辨率、24帧每秒的视频,并自然支持图像到视频的生成。它是视频内容创作和研究领域的一个重要工具,尤其在需要生成连贯动态图像的场合。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
Viral Video是一个利用人工智能技术帮助用户快速创建病毒式视频的在线平台。它通过文本到视频的转换、文本到语音的转换、AI视频编辑和AI场景生成等功能,简化了视频制作流程,降低了成本,并提高了视频的吸引力和传播潜力。该平台特别适合内容创作者、营销人员和社交媒体运营者,帮助他们以更低的成本和更快的速度制作出高质量的视频内容,从而在社交媒体上获得更多的关注和互动。
Mochi 1 是 Genmo 公司推出的一款研究预览版本的开源视频生成模型,它致力于解决当前AI视频领域的基本问题。该模型以其无与伦比的运动质量、卓越的提示遵循能力和跨越恐怖谷的能力而著称,能够生成连贯、流畅的人类动作和表情。Mochi 1 的开发背景是响应对高质量视频内容生成的需求,特别是在游戏、电影和娱乐行业中。产品目前提供免费试用,具体定价信息未在页面中提供。
Allegro是由Rhymes AI开发的高级文本到视频模型,它能够将简单的文本提示转换成高质量的短视频片段。Allegro的开源特性使其成为创作者、开发者和AI视频生成领域研究人员的强大工具。Allegro的主要优点包括开源、内容创作多样化、高质量输出以及模型体积小且高效。它支持多种精度(FP32、BF16、FP16),在BF16模式下,GPU内存使用量为9.3 GB,上下文长度为79.2k,相当于88帧。Allegro的技术核心包括大规模视频数据处理、视频压缩成视觉令牌以及扩展视频扩散变换器。
Dream Machine API是一个创意智能平台,它提供了一系列先进的视频生成模型,通过直观的API和开源SDKs,用户可以构建和扩展创意AI产品。该平台拥有文本到视频、图像到视频、关键帧控制、扩展、循环和相机控制等功能,旨在通过创意智能与人类合作,帮助他们创造更好的内容。Dream Machine API的推出,旨在推动视觉探索和创造的丰富性,让更多的想法得以尝试,构建更好的叙事,并让那些以前无法做到的人讲述多样化的故事。
AI Youtube Shorts Generator 是一个利用GPT-4和Whisper技术的Python工具,它可以从长视频中提取最有趣的亮点,检测演讲者,并将内容垂直裁剪,以适应短片格式。这个工具目前处于0.1版本,可能存在一些bug。
CogVideo是由清华大学团队开发的文本到视频生成模型,它通过深度学习技术将文本描述转换为视频内容。该技术在视频内容创作、教育、娱乐等领域具有广泛的应用前景。CogVideo模型通过大规模预训练,能够生成与文本描述相匹配的视频,为视频制作提供了一种全新的自动化方式。
CogVideoX是一个开源的视频生成模型,由清华大学团队开发,支持从文本描述生成视频。它提供了多种视频生成模型,包括入门级和大型模型,以满足不同质量和成本需求。模型支持多种精度,包括FP16和BF16,推荐使用与模型训练时相同的精度进行推理。CogVideoX-5B模型特别适用于需要生成高质量视频内容的场景,如电影制作、游戏开发和广告创意。
Dream Machine AI是一个利用尖端技术将文字和图片转化为高质量视频的AI平台。它由Luma AI驱动,使用先进的变换模型快速生成具有复杂时空运动的物理准确和一致的视频内容。主要优点包括生成速度快、运动逼真连贯、角色一致性高、相机运动自然。产品定位为视频创作者和内容制作者提供快速高效的视频生成解决方案。
CogVideoX是一个开源的视频生成模型,与商业模型同源,支持通过文本描述生成视频内容。它代表了文本到视频生成技术的最新进展,具有生成高质量视频的能力,能够广泛应用于娱乐、教育、商业宣传等领域。
Open-Sora Plan v1.2是一个开源的视频生成模型,专注于文本到视频的转换任务。它采用3D全注意力架构,优化了视频的视觉表示,并提高了推理效率。该模型在视频生成领域具有创新性,能够更好地捕捉联合空间-时间特征,为视频内容的自动生成提供了新的技术路径。
AsyncDiff 是一种用于并行化扩散模型的异步去噪加速方案,它通过将噪声预测模型分割成多个组件并分配到不同的设备上,实现了模型的并行处理。这种方法显著减少了推理延迟,同时对生成质量的影响很小。AsyncDiff 支持多种扩散模型,包括 Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion x4 Upscaler、Stable Diffusion XL 1.0、ControlNet、Stable Video Diffusion 和 AnimateDiff。
Kling AI是由快手科技开发的文本到视频生成模型,能够根据文本提示生成高度逼真的视频。它具有高效的视频生成能力,长达2分钟的30帧每秒视频,以及3D时空联合注意机制和物理世界模拟等先进技术,使其在AI视频生成领域具有显著的竞争优势。
ShareGPT4Video系列旨在通过密集且精确的字幕来促进大型视频-语言模型(LVLMs)的视频理解以及文本到视频模型(T2VMs)的视频生成。该系列包括:1) ShareGPT4Video,40K GPT4V注释的密集视频字幕,通过精心设计的数据过滤和注释策略开发而成。2) ShareCaptioner-Video,一个高效且功能强大的任意视频字幕模型,由其注释的4.8M高质量美学视频。3) ShareGPT4Video-8B,一个简单但卓越的LVLM,其在三个先进的视频基准测试中达到了最佳性能。
VideoTetris是一个新颖的框架,它实现了文本到视频的生成,特别适用于处理包含多个对象或对象数量动态变化的复杂视频生成场景。该框架通过空间时间组合扩散技术,精确地遵循复杂的文本语义,并通过操作和组合去噪网络的空间和时间注意力图来实现。此外,它还引入了一种新的参考帧注意力机制,以提高自回归视频生成的一致性。VideoTetris在组合文本到视频生成方面取得了令人印象深刻的定性和定量结果。
Dream Machine是由Luma Labs开发的一款先进的人工智能模型,旨在快速从文本和图片生成高质量的、逼真的视频。这个高度可扩展且高效的变换模型直接在视频上训练,使其能够产生物理上准确、一致且充满事件的镜头。Dream Machine AI是朝着创建通用想象力引擎迈出的重要一步,使每个人都能轻松访问。它可以生成带有平滑动作、电影质量和戏剧元素的5秒视频片段,将静态快照转化为动态故事。该模型理解物理世界中人与人之间、动物和物体之间的互动,允许创建具有极佳角色一致性和准确物理的视频。此外,Dream Machine AI支持广泛的流畅、电影化和自然主义的摄像机运动,与场景的情感和内容相匹配。
MotionClone是一个训练无关的框架,允许从参考视频进行运动克隆,以控制文本到视频的生成。它利用时间注意力机制在视频反转中表示参考视频中的运动,并引入了主时间注意力引导来减轻注意力权重中噪声或非常微妙运动的影响。此外,为了协助生成模型合成合理的空间关系并增强其提示跟随能力,提出了一种利用参考视频中的前景粗略位置和原始分类器自由引导特征的位置感知语义引导机制。
Follow-Your-Pose是一个文本到视频生成的模型,它利用姿势信息和文本描述来生成可编辑、可控制姿势的角色视频。这项技术在数字人物创作领域具有重要应用价值,解决了缺乏综合数据集和视频生成先验模型的限制。通过两阶段训练方案,结合预训练的文本到图像模型,实现了姿势可控的视频生成。
Open-Sora-Plan是一个由北京大学元组团队开发的文本到视频生成模型。它在2024年4月首次推出v1.0.0版本,以其简单高效的设计和显著的性能在文本到视频生成领域获得了广泛认可。v1.1.0版本在视频生成质量和持续时间上进行了显著改进,包括更优的压缩视觉表示、更高的生成质量和更长的视频生成能力。该模型采用了优化的CausalVideoVAE架构,具有更强的性能和更高的推理效率。此外,它还保持了v1.0.0版本的极简设计和数据效率,并且与Sora基础模型的性能相似,表明其版本演进与Sora展示的扩展法则一致。
Lumina-T2X是一个先进的文本到任意模态生成框架,它能够将文本描述转换为生动的图像、动态视频、详细的多视图3D图像和合成语音。该框架采用基于流的大型扩散变换器(Flag-DiT),支持高达7亿参数,并能扩展序列长度至128,000个标记。Lumina-T2X集成了图像、视频、3D对象的多视图和语音频谱图到一个时空潜在标记空间中,可以生成任何分辨率、宽高比和时长的输出。
AI视频生成器让每个人都能通过文本创作出令人惊叹的视频。功能包括:创意转视频、博客转视频、PPT转视频、推文转视频、头像视频、产品转视频等。适用于内容创作、商业营销、教育培训、电子商务等领域。
Mira(Mini-Sora)是一个实验性的项目,旨在探索高质量、长时视频生成领域,特别是在模仿Sora风格的视频生成方面。它在现有文本到视频(T2V)生成框架的基础上,通过以下几个关键方面实现突破:扩展序列长度、增强动态特性以及保持3D一致性。目前,Mira项目处于实验阶段,与Sora等更高级的视频生成技术相比,仍有提升空间。
CameraCtrl 致力于为文本生成视频模型提供精准相机姿态控制,通过训练相机编码器实现参数化相机轨迹,从而实现视频生成过程中的相机控制。产品通过综合研究各种数据集的效果,证明视频具有多样的相机分布和相似外观可以增强可控性和泛化能力。实验证明 CameraCtrl 在实现精确、领域自适应的相机控制方面非常有效,是从文本和相机姿态输入实现动态、定制视频叙事的重要进展。
ByteDance的AnimateDiff-Lightning项目通过特定的模型和设置,实现了比原始AnimateDiff快速十倍以上的文本到视频生成。
VLOGGER是一种从单张人物输入图像生成文本和音频驱动的讲话人类视频的方法,它建立在最近生成扩散模型的成功基础上。我们的方法包括1)一个随机的人类到3D运动扩散模型,以及2)一个新颖的基于扩散的架构,通过时间和空间控制增强文本到图像模型。这种方法能够生成长度可变的高质量视频,并且通过对人类面部和身体的高级表达方式轻松可控。与以前的工作不同,我们的方法不需要为每个人训练,也不依赖于人脸检测和裁剪,生成完整的图像(而不仅仅是面部或嘴唇),并考虑到正确合成交流人类所需的广泛场景(例如可见的躯干或多样性主体身份)。
Tavus提供了一系列的AI模型,特别是在生成高度逼真的说话头部视频方面,其Phoenix模型通过神经辐射场(NeRFs)技术,能够产生自然面部动作和表情,并与输入同步。开发者可以通过Tavus的API访问这些具有高度真实感和可定制性的视频生成服务。
ACT 1(Advanced Cinematic Transformer)是一个由Hotshot Research开发的直接文本到视频合成系统,它能够生成高清晰度的视频,具有多种宽高比且无水印,提供引人入胜的用户体验。该系统通过使用大规模高分辨率文本视频语料库进行训练,以实现高保真度的空间对齐、时间对齐和审美质量。
Morph Studio是一个基于人工智能的文本到视频生成平台。它使用先进的算法,可以通过用户提供的文本提示,自动生成高质量的视频。Morph Studio使创作者可以将自己的创意快速实现成动态的视觉内容。它极大地降低了视频制作的门槛,用户无需具备专业技能和昂贵设备,就可以创造出独特的视频作品。此外,Morph Studio还提供了强大的自定义功能,用户可以调整生成视频的长度、分辨率、样式等参数,输出结果更符合自己的需求。总之,这是一款极具创新和颠覆性的人工智能产品。
OpenDiT是一个开源项目,提供了一个基于Colossal-AI的Diffusion Transformer(DiT)的高性能实现,专为增强DiT应用(包括文本到视频生成和文本到图像生成)的训练和推理效率而设计。OpenDiT通过以下技术提升性能:在GPU上高达80%的加速和50%的内存减少;包括FlashAttention、Fused AdaLN和Fused layernorm核心优化;包括ZeRO、Gemini和DDP的混合并行方法,还有对ema模型进行分片进一步降低内存成本;FastSeq:一种新颖的序列并行方法,特别适用于DiT等工作负载,其中激活大小较大但参数大小较小;单节点序列并行可以节省高达48%的通信成本;突破单个GPU的内存限制,减少整体训练和推理时间;通过少量代码修改获得巨大性能改进;用户无需了解分布式训练的实现细节;完整的文本到图像和文本到视频生成流程;研究人员和工程师可以轻松使用和调整我们的流程到实际应用中,无需修改并行部分;在ImageNet上进行文本到图像训练并发布检查点。
Sora 是 OpenAI 开发的文本到视频生成模型,能够根据文本描述生成长达1分钟的逼真图像序列。它具有理解和模拟物理世界运动的能力,目标是训练出帮助人们解决需要实物交互的问题的模型。Sora 可以解释长篇提示,根据文本输入生成各种人物、动物、景观和城市景象。它的缺点是难以准确描绘复杂场景的物理学以及理解因果关系。
AI SORA TECH是一款革命性的内容创作工具,利用先进的视频生成技术,将文本和图像转化为动态视频,并支持视频到视频的创作。它可以根据输入的文本或图像生成整个视频或延长现有视频的长度,满足各种视频制作需求。AI SORA TECH的功能丰富,操作简便,适用于专业人士和初学者。
Lumiere是一个文本到视频扩散模型,旨在合成展现真实、多样和连贯运动的视频,解决视频合成中的关键挑战。我们引入了一种空时U-Net架构,可以一次性生成整个视频的时间持续,通过模型的单次传递。这与现有的视频模型形成对比,后者合成远距离的关键帧,然后进行时间超分辨率处理,这种方法本质上使得全局时间一致性难以实现。通过部署空间和(重要的是)时间的下采样和上采样,并利用预训练的文本到图像扩散模型,我们的模型学会直接生成多个时空尺度下的全帧率、低分辨率视频。我们展示了最先进的文本到视频生成结果,并展示了我们的设计轻松促进了各种内容创作任务和视频编辑应用,包括图像到视频、视频修补和风格化生成。
该产品是一种用于评价文本到视频生成质量的工具。它引入了一种新的评价指标,即文本到视频评分(T2VScore)。该评分整合了两个关键标准:(1)文本-视频对齐,用于审查视频在呈现给定文本描述方面的忠实度;(2)视频质量,评估视频的整体制作水平。此外,为了评估提出的指标并促进未来对其的改进,该产品提供了TVGE数据集,收集了对2,543个文本到视频生成视频在这两个标准上的人类判断。对TVGE数据集的实验表明,提出的T2VScore在为文本到视频生成提供更好的评价指标方面表现出优越性。
MagicVideo-V2是一个集成了文本到图像模型、视频运动生成器、参考图像嵌入模块和帧插值模块的端到端视频生成管道。其架构设计使得MagicVideo-V2能够生成外观美观、高分辨率的视频,具有出色的保真度和平滑性。通过大规模用户评估,它展现出比Runway、Pika 1.0、Morph、Moon Valley和Stable Video Diffusion等领先的文本到视频系统更优越的性能。
FreeInit是一个简单有效的方法,用于提高视频生成模型的时间一致性。它不需要额外的训练,也不引入可学习的参数,可以很容易地在任意视频生成模型的推理时集成使用。
InstructVideo 是一种通过人类反馈用奖励微调来指导文本到视频的扩散模型的方法。它通过编辑的方式进行奖励微调,减少了微调成本,同时提高了微调效率。它使用已建立的图像奖励模型,通过分段稀疏采样和时间衰减奖励的方式提供奖励信号,显著提高了生成视频的视觉质量。InstructVideo 不仅能够提高生成视频的视觉质量,还能保持较强的泛化能力。欲了解更多信息,请访问官方网站。
SparseCtrl是为了增强对文本到视频生成的控制性而开发的,它能够灵活地结合稀疏信号进行结构控制,只需一个或少量输入。它包括一个额外的条件编码器来处理这些稀疏信号,同时不影响预训练的文本到视频模型。该方法兼容各种形式,包括素描、深度和RGB图像,为视频生成提供更实用的控制,并推动故事板、深度渲染、关键帧动画和插值等应用。大量实验证明了SparseCtrl在原始和个性化文本到视频生成器上的泛化能力。
Moonvalley 是一款突破性的文本到视频生成 AI 模型,可以从简单的文本提示中创建出令人惊叹的高清视频和动画。它采用先进的机器学习技术,能够根据用户输入的文本提示,生成逼真、精美的影片和动画。无论是制作电影、广告、动画短片还是个人创作,Moonvalley 都能帮助用户快速将想法转化为视觉作品。
Show-1是一种高效的文本到视频生成模型,它结合了像素级和潜变量级的扩散模型,既能生成与文本高度相关的视频,也能以较低的计算资源要求生成高质量的视频。它首先用像素级模型生成低分辨率的初步视频,然后使用潜变量模型将其上采样到高分辨率,从而结合两种模型的优势。相比纯潜变量模型,Show-1生成的视频文本关联更准确;相比纯像素模型,它的运算成本也更低。