-->
共找到 8 个AI工具
点击任意工具查看详细信息
AutoArena是一个自动化的生成式AI评估平台,专注于评估大型语言模型(LLMs)、检索增强生成(RAG)系统和生成式AI应用。它通过自动化的头对头判断来提供可信的评估,帮助用户快速、准确、经济地找到系统的最佳版本。该平台支持使用来自不同供应商的判断模型,如OpenAI、Anthropic等,也可以使用本地运行的开源权重判断模型。AutoArena还提供了Elo评分和置信区间计算,帮助用户将多次头对头投票转化为排行榜排名。此外,AutoArena支持自定义判断模型的微调,以实现更准确、特定领域的评估,并可以集成到持续集成(CI)流程中,以自动化评估生成式AI系统。
Cheating LLM Benchmarks 是一个研究项目,旨在通过构建所谓的“零模型”(null models)来探索在自动语言模型(LLM)基准测试中的作弊行为。该项目通过实验发现,即使是简单的零模型也能在这些基准测试中取得高胜率,这挑战了现有基准测试的有效性和可靠性。该研究对于理解当前语言模型的局限性和改进基准测试方法具有重要意义。
SWE-bench Verified是OpenAI发布的一个经过人工验证的SWE-bench子集,旨在更可靠地评估AI模型解决现实世界软件问题的能力。它通过提供代码库和问题描述,挑战AI生成解决所描述问题的补丁。这个工具的开发是为了提高模型自主完成软件工程任务的能力评估的准确性,是OpenAI准备框架中中等风险级别的关键组成部分。
Turtle Benchmark是一款基于'Turtle Soup'游戏的新型、无法作弊的基准测试,专注于评估大型语言模型(LLMs)的逻辑推理和上下文理解能力。它通过消除对背景知识的需求,提供了客观和无偏见的测试结果,具有可量化的结果,并且通过使用真实用户生成的问题,使得模型无法被'游戏化'。
llm-colosseum是一个创新的基准测试工具,它使用街霸3游戏来评估大型语言模型(LLM)的实时决策能力。与传统的基准测试不同,这个工具通过模拟实际游戏场景来测试模型的快速反应、智能策略、创新思维、适应性和恢复力。
Prometheus-Eval 是一个用于评估大型语言模型(LLM)在生成任务中表现的开源工具集。它提供了一个简单的接口,使用 Prometheus 模型来评估指令和响应对。Prometheus 2 模型支持直接评估(绝对评分)和成对排名(相对评分),能够模拟人类判断和专有的基于语言模型的评估,解决了公平性、可控性和可负担性的问题。
Deepmark AI 是一款用于评估大型语言模型(LLM)的基准工具,可在自己的数据上对各种任务特定指标进行评估。它与 GPT-4、Anthropic、GPT-3.5 Turbo、Cohere、AI21 等领先的生成式 AI API 进行预集成。
DeepEval提供了不同方面的度量来评估LLM对问题的回答,以确保答案是相关的、一致的、无偏见的、非有毒的。这些可以很好地与CI/CD管道集成在一起,允许机器学习工程师快速评估并检查他们改进LLM应用程序时,LLM应用程序的性能是否良好。DeepEval提供了一种Python友好的离线评估方法,确保您的管道准备好投入生产。它就像是“针对您的管道的Pytest”,使生产和评估管道的过程与通过所有测试一样简单直接。
探索 编程 分类下的其他子分类
768 个工具
465 个工具
368 个工具
294 个工具
140 个工具
85 个工具
66 个工具
61 个工具
AI模型评测 是 编程 分类下的热门子分类,包含 8 个优质AI工具