共找到 34 个AI工具
点击任意工具查看详细信息
ComfyUI-PyramidFlowWrapper是基于Pyramid-Flow模型的一套包装节点,旨在通过ComfyUI提供更高效的用户界面和更便捷的操作流程。该模型利用深度学习技术,专注于视觉内容的生成与处理,具有高效处理大量数据的能力。产品背景信息显示,它是由开发者kijai发起并维护的开源项目,目前尚未完全实现功能,但已具备一定的使用价值。由于是开源项目,其价格为免费,主要面向开发者和技术爱好者。
ComfyUI LLM Party旨在基于ComfyUI前端开发一套完整的LLM工作流节点集合,使用户能够快速便捷地构建自己的LLM工作流,并轻松地将它们集成到现有的图像工作流中。
x-flux-comfyui是一个集成在ComfyUI中的AI模型工具,它提供了多种功能,包括模型训练、模型加载、以及图像处理等。该工具支持低内存模式,可以优化VRAM的使用,适合需要在资源受限的环境中运行AI模型的用户。此外,它还提供了IP Adapter功能,可以与OpenAI的VIT CLIP模型配合使用,增强生成图像的多样性和质量。
ComfyUI-GGUF是一个为ComfyUI原生模型提供GGUF量化支持的项目。它允许模型文件以GGUF格式存储,这种格式由llama.cpp推广。尽管常规的UNET模型(conv2d)不适用于量化,但像flux这样的transformer/DiT模型似乎受量化影响较小。这使得它们可以在低端GPU上以更低的每权重变量比特率进行运行。
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
Alpha-VLLM提供了一系列模型,支持从文本到图像、音频等多模态内容的生成。这些模型基于深度学习技术,可以广泛应用于内容创作、数据增强、自动化设计等领域。
ComfyUI-Sub-Nodes是一个GitHub上的开源项目,旨在为ComfyUI提供子图节点功能。它允许用户在ComfyUI中创建和使用子图,以提高工作流的组织性和复用性。这个插件特别适合需要在UI中进行复杂工作流管理的开发者。
MG-LLaVA是一个增强模型视觉处理能力的机器学习语言模型(MLLM),通过整合多粒度视觉流程,包括低分辨率、高分辨率和以对象为中心的特征。提出了一个额外的高分辨率视觉编码器来捕捉细节,并通过Conv-Gate融合网络与基础视觉特征融合。此外,通过离线检测器识别的边界框整合对象级特征,以进一步细化模型的对象识别能力。MG-LLaVA仅在公开可用的多模态数据上通过指令调优进行训练,展现出卓越的感知技能。
AsyncDiff 是一种用于并行化扩散模型的异步去噪加速方案,它通过将噪声预测模型分割成多个组件并分配到不同的设备上,实现了模型的并行处理。这种方法显著减少了推理延迟,同时对生成质量的影响很小。AsyncDiff 支持多种扩散模型,包括 Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion x4 Upscaler、Stable Diffusion XL 1.0、ControlNet、Stable Video Diffusion 和 AnimateDiff。
ComfyUI-Hallo是一个为Hallo模型定制的ComfyUI插件,它允许用户在命令行中使用ffmpeg,并从Hugging Face下载模型权重,或者手动下载并放置在指定目录。它为开发者提供了一个易于使用的界面来集成Hallo模型,从而增强了开发效率和用户体验。
ComfyUI-LuminaWrapper是一个开源的Python包装器,用于简化Lumina模型的加载和使用。它支持自定义节点和工作流,使得开发者能够更便捷地集成Lumina模型到自己的项目中。该插件主要面向希望在Python环境中使用Lumina模型进行深度学习或机器学习的开发者。
EVE是一个编码器自由的视觉-语言模型,由大连理工大学、北京人工智能研究院和北京大学的研究人员共同开发。它在不同图像宽高比下展现出卓越的能力,性能超越了Fuyu-8B,并且接近模块化编码器基础的LVLMs。EVE在数据效率、训练效率方面表现突出,使用33M公开数据进行预训练,并利用665K LLaVA SFT数据为EVE-7B模型训练,以及额外的1.2M SFT数据为EVE-7B (HD)模型训练。EVE的开发采用了高效、透明、实用的策略,为跨模态的纯解码器架构开辟了新途径。
ComfyUI Ollama是为ComfyUI工作流设计的自定义节点,它使用ollama Python客户端,允许用户轻松地将大型语言模型(LLM)集成到他们的工作流程中,或者仅仅是进行GPT实验。这个插件的主要优点在于它提供了与Ollama服务器交互的能力,使得用户可以执行图像查询、通过给定的提示查询LLM,以及使用精细调整参数进行LLM查询,同时保持生成链的上下文。
JavaVision是一个基于Java开发的全能视觉智能识别项目,它不仅实现了PaddleOCR-V4、YoloV8物体识别、人脸识别、以图搜图等核心功能,还可以轻松扩展到其他领域,如语音识别、动物识别、安防检查等。项目特点包括使用SpringBoot框架、多功能性、高性能、可靠稳定、易于集成和灵活可拓展。JavaVision旨在为Java开发者提供一个全面的视觉智能识别解决方案,让他们能够以熟悉且喜爱的编程语言构建出先进、可靠且易于集成的AI应用。
llava-llama-3-8b-v1_1是一个由XTuner优化的LLaVA模型,它基于meta-llama/Meta-Llama-3-8B-Instruct和CLIP-ViT-Large-patch14-336,并通过ShareGPT4V-PT和InternVL-SFT进行了微调。该模型专为图像和文本的结合处理而设计,具有强大的多模态学习能力,适用于各种下游部署和评估工具包。
Mini-Gemini是一个多模态视觉语言模型,支持从2B到34B的系列密集和MoE大型语言模型,同时具备图像理解、推理和生成能力。它基于LLaVA构建,利用双视觉编码器提供低分辨率视觉嵌入和高分辨率候选区域,采用补丁信息挖掘在高分辨率区域和低分辨率视觉查询之间进行补丁级挖掘,将文本与图像融合用于理解和生成任务。支持包括COCO、GQA、OCR-VQA、VisualGenome等多个视觉理解基准测试。
ComfyUI-Cloud 是一个自定义节点,它使用户可以在本地完全控制 ComfyUI 的同时,利用云 GPU 资源来运行他们的工作流程。它允许用户运行需要高 VRAM 的工作流程,而不需要将自定义节点/模型导入云提供商或花费金钱购买新的 GPU。
Champ 是一种用于生成 3D 物体形状的生成模型,它结合了隐函数和卷积神经网络,以生成高质量、多样化和逼真的 3D 形状。它可以生成各种类别的形状,包括动物、车辆和家具。
ComfyUI-N-Sidebar是一个开源项目,它结合了ComfyUI和N-Sidebar两个库,旨在为用户提供一个舒适且易于使用的用户界面和导航栏。该项目通过简化界面元素和优化交互设计,提高了用户体验。
ComfyUI-APISR是ComfyUI项目的API服务端部分,它为ComfyUI客户端应用提供必要的后端支持。ComfyUI是一个旨在提供舒适用户体验的用户界面框架。
这是一款ComfyUI的自定义采样器插件节点,实现了Zheng等人提出的基于轨迹一致性蒸馏(TCD)的采样方法。插件为ComfyUI的Custom Sampler类别增加了TCDScheduler和SamplerTCD节点。只需将其克隆到custom_nodes文件夹中,重启ComfyUI即可使用。TCDScheduler有一个特殊参数eta,用于控制每一步的随机性。当eta=0时表示确定性采样,eta=1时表示完全随机采样。默认值为0.3,但在增加推理步数时建议使用更高的eta值。该插件基于轨迹一致性蒸馏采样方法,可为AI模型提供更加平滑和一致的输出结果。
Tavus提供了一系列的AI模型,特别是在生成高度逼真的说话头部视频方面,其Phoenix模型通过神经辐射场(NeRFs)技术,能够产生自然面部动作和表情,并与输入同步。开发者可以通过Tavus的API访问这些具有高度真实感和可定制性的视频生成服务。
ComfyUI-layerdiffusion是一个GitHub项目,提供了Layer Diffusion模型的自定义节点实现。该项目允许用户通过Python依赖安装,并且目前仅支持SDXL模型。项目的目标是为ComfyUI用户提供Layer Diffusion模型的便捷集成。
OpenDiT是一个开源项目,提供了一个基于Colossal-AI的Diffusion Transformer(DiT)的高性能实现,专为增强DiT应用(包括文本到视频生成和文本到图像生成)的训练和推理效率而设计。OpenDiT通过以下技术提升性能:在GPU上高达80%的加速和50%的内存减少;包括FlashAttention、Fused AdaLN和Fused layernorm核心优化;包括ZeRO、Gemini和DDP的混合并行方法,还有对ema模型进行分片进一步降低内存成本;FastSeq:一种新颖的序列并行方法,特别适用于DiT等工作负载,其中激活大小较大但参数大小较小;单节点序列并行可以节省高达48%的通信成本;突破单个GPU的内存限制,减少整体训练和推理时间;通过少量代码修改获得巨大性能改进;用户无需了解分布式训练的实现细节;完整的文本到图像和文本到视频生成流程;研究人员和工程师可以轻松使用和调整我们的流程到实际应用中,无需修改并行部分;在ImageNet上进行文本到图像训练并发布检查点。
gligen-gui是一个为GLIGEN提供直观图形用户界面的插件,它使用ComfyUI作为后端,旨在简化GLIGEN的操作流程,提高用户体验。
Imp项目旨在提供一系列强大的多模态小语言模型(MSLMs)。我们的imp-v1-3b是一个拥有30亿参数的强大MSLM,它建立在一个小而强大的SLM Phi-2(27亿)和一个强大的视觉编码器SigLIP(4亿)之上,并在LLaVA-v1.5训练集上进行了训练。Imp-v1-3b在各种多模态基准测试中明显优于类似模型规模的对手,甚至在各种多模态基准测试中表现略优于强大的LLaVA-7B模型。
PetThoughts是一个基于Gemini API构建的图像识别应用程序。用户可以上传宠物的照片,应用程序会通过智能分析宠物的面部表情和环境,推测它可能在想些什么。该应用程序具有图像识别、面部分析、环境分析等功能,能准确识别宠物的面部表情,分析其可能的情绪状态,同时结合环境推断宠物的活动,最后通过自然语言处理技术,将识别结果转换成可读的文本描述。该应用提供简洁直观的用户界面,使用户可以轻松上传照片并获得宠物分析结果。它可以帮助用户更深入地理解宠物的情感和偏好。
SCEPTER是一个开源代码库,致力于生成式模型的训练、调优和推理,涵盖图像生成、迁移、编辑等一系列下游任务。它整合了社区主流实现以及阿里巴巴通逸实验室自研方法,为生成式领域的研究人员和从业者提供全面、通用的工具集。这个多功能库旨在促进创新,加速这个快速发展的领域的进步。
Comfyspace是ComfyUI Workspace Manager一个用于组织和管理所有工作流程的ComfyUI工作流管理扩展。它允许用户在单一工作空间内无缝切换不同的工作流程,同时支持导入、导出工作流程和重用子工作流模块。特点包括版本控制、图库和封面图片设置、以及便捷的工作流程组织功能。
该代码仓库包含从合成图像数据(主要是图片)进行学习的研究,包括StableRep、Scaling和SynCLR三个项目。这些项目研究了如何利用文本到图像模型生成的合成图像数据进行视觉表示模型的训练,并取得了非常好的效果。
LangSplat通过将CLIP语言嵌入映射到一组3D高斯分布来构建3D语言场,实现了对3D场景进行开放词汇量查询。它避免了NeRF中的昂贵渲染过程,大大提高了效率。学习到的语言特征精确捕捉对象边界,提供了精确的3D语言场,没有需要后处理。LangSplat相比LERF提高了199倍的速度。
LLaVA-3b是一种基于Dolphin 2.6 Phi进行微调的模型,使用SigLIP 400M的视觉塔以LLaVA方式进行微调。模型具有多个图像标记、使用视觉编码器的最新层输出等特点。此模型基于Phi-2,受微软研究许可证约束,禁止商业使用。感谢ML Collective提供的计算资源积分。
UniRef是一个统一的用于图像和视频参考对象分割的模型。它支持语义参考图像分割(RIS)、少样本分割(FSS)、语义参考视频对象分割(RVOS)和视频对象分割(VOS)等多种任务。UniRef的核心是UniFusion模块,它可以高效地将各种参考信息注入到基础网络中。 UniRef可以作为SAM等基础模型的插件组件使用。UniRef提供了在多个基准数据集上训练好的模型,同时也开源了代码以供研究使用。
ResFields是一类专门设计用于有效表示复杂时空信号的网络。它将时变权重引入多层感知机中,利用可训练的残差参数增强了模型的表达能力。该方法可以无缝集成到现有技术中,并可显著提高各种具有挑战性的任务的结果,如2D视频逼近、动态形状建模和动态NeRF重建等。
探索 编程 分类下的其他子分类
768 个工具
465 个工具
368 个工具
294 个工具
140 个工具
85 个工具
66 个工具
61 个工具
AI图像生成 是 编程 分类下的热门子分类,包含 34 个优质AI工具