共找到 4 个AI工具
点击任意工具查看详细信息
SMPLer-X是一种基于大数据和大模型的人体姿态和形状估计模型,能够统一捕捉身体、手和面部的运动,并具有广泛的应用。该模型通过对32个不同场景的数据集进行系统研究,优化训练方案并选择数据集,从而实现了对EHPS能力的显著提升。SMPLer-X采用Vision Transformer进行模型扩展,并通过微调策略将其转化为专家模型,从而进一步提高性能。该模型在多个基准测试中均表现出色,如AGORA(107.2 mm NMVE)、UBody(57.4 mm PVE)、EgoBody(63.6 mm PVE)和EHF(62.3 mm PVE without finetuning)。SMPLer-X的优势在于能够处理多样化的数据源,具有出色的泛化能力和可迁移性。
DreamLLM是一个学习框架,首次实现了多模态大型语言模型(LLM)在多模态理解和创作之间的协同效应。它通过直接在原始多模态空间中进行采样,生成语言和图像的后验模型。这种方法避免了像CLIP这样的外部特征提取器所固有的限制和信息损失,从而获得了更全面的多模态理解。DreamLLM还通过建模文本和图像内容以及无结构布局的原始交叉文档,有效地学习了所有条件、边缘和联合多模态分布。因此,DreamLLM是第一个能够生成自由形式交叉内容的MLLM。全面的实验证明了DreamLLM作为零样本多模态通才的卓越性能,充分利用了增强的学习协同效应。
DINOv2 是一种无监督学习的自我监督学习方法,可以生成高性能的视觉特征,适用于计算机视觉任务。它不需要微调,具有稳健性和跨领域性能。
CelebV-Text是一个大规模、高质量、多样化的人脸文本-视频数据集,旨在促进人脸文本-视频生成任务的研究。数据集包含70,000个野外人脸视频剪辑,每个视频剪辑都配有20个文本,涵盖40种一般外观、5种详细外观、6种光照条件、37种动作、8种情绪和6种光线方向。CelebV-Text通过全面的统计分析验证了其在视频、文本和文本-视频相关性方面的优越性,并构建了一个基准来标准化人脸文本-视频生成任务的评估。
探索 图像 分类下的其他子分类
832 个工具
771 个工具
543 个工具
522 个工具
352 个工具
196 个工具
95 个工具
68 个工具
AI模型推理训练 是 图像 分类下的热门子分类,包含 4 个优质AI工具