-->
共找到 27 个AI工具
点击任意工具查看详细信息
Llama-3.1-Nemotron-70B-Instruct是NVIDIA定制的大型语言模型,专注于提升大型语言模型(LLM)生成回答的帮助性。该模型在多个自动对齐基准测试中表现优异,例如Arena Hard、AlpacaEval 2 LC和GPT-4-Turbo MT-Bench。它通过使用RLHF(特别是REINFORCE算法)、Llama-3.1-Nemotron-70B-Reward和HelpSteer2-Preference提示在Llama-3.1-70B-Instruct模型上进行训练。此模型不仅展示了NVIDIA在提升通用领域指令遵循帮助性方面的技术,还提供了与HuggingFace Transformers代码库兼容的模型转换格式,并可通过NVIDIA的build平台进行免费托管推理。
Zamba2-7B是由Zyphra团队开发的一款小型语言模型,它在7B规模上超越了当前领先的模型,如Mistral、Google的Gemma和Meta的Llama3系列,无论是在质量还是性能上。该模型专为在设备上和消费级GPU上运行以及需要强大但紧凑高效模型的众多企业应用而设计。Zamba2-7B的发布,展示了即使在7B规模上,前沿技术仍然可以被小团队和适度预算所触及和超越。
tiiuae/falcon-mamba-7b是由TII UAE开发的高性能因果语言模型,基于Mamba架构,专为生成任务设计。该模型在多个基准测试中展现出色的表现,并且能够在不同的硬件配置上运行,支持多种精度设置,以适应不同的性能和资源需求。模型的训练使用了先进的3D并行策略和ZeRO优化技术,使其在大规模GPU集群上高效训练成为可能。
Llama-3.1-Nemotron-51B是由NVIDIA基于Meta的Llama-3.1-70B开发的新型语言模型,通过神经架构搜索(NAS)技术优化,实现了高准确率和高效率。该模型能够在单个NVIDIA H100 GPU上运行,显著降低了内存占用,减少了内存带宽和计算量,同时保持了优秀的准确性。它代表了AI语言模型在准确性和效率之间取得的新平衡,为开发者和企业提供了成本可控的高性能AI解决方案。
OLMoE是一个完全开放的、最先进的专家混合模型,具有1.3亿活跃参数和6.9亿总参数。该模型的所有数据、代码和日志都已发布。它提供了论文'OLMoE: Open Mixture-of-Experts Language Models'的所有资源概览。该模型在预训练、微调、适应和评估方面都具有重要应用,是自然语言处理领域的一个里程碑。
C4AI Command R 08-2024是由Cohere和Cohere For AI开发的35亿参数大型语言模型,专为推理、总结和问答等多种用例优化。该模型支持23种语言的训练,并在10种语言中进行了评估,具有高性能的RAG(检索增强生成)能力。它通过监督式微调和偏好训练,以符合人类对有用性和安全性的偏好。此外,该模型还具备对话工具使用能力,能够通过特定的提示模板生成基于工具的响应。
Mistral-NeMo-Minitron 8B是由NVIDIA发布的小型语言模型,它是Mistral NeMo 12B模型的精简版,能够在保持高准确度的同时,提供计算效率,使其能够在GPU加速的数据中心、云和工作站上运行。该模型通过NVIDIA NeMo平台进行定制开发,结合了剪枝和蒸馏两种AI优化方法,以降低计算成本的同时提供与原始模型相当的准确度。
Grok-2是xAI的前沿语言模型,具有最先进的推理能力。此次发布包括Grok家族的两个成员:Grok-2和Grok-2 mini。这两个模型现在都在𝕏平台上发布给Grok用户。Grok-2是Grok-1.5的重要进步,具有聊天、编程和推理方面的前沿能力。同时,xAI引入了Grok-2 mini,一个小巧但功能强大的Grok-2的兄弟模型。Grok-2的早期版本已经在LMSYS排行榜上以“sus-column-r”的名字进行了测试。它在整体Elo得分方面超过了Claude 3.5 Sonnet和GPT-4-Turbo。
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B大小的版本,支持8种语言,专为多语言对话用例优化,并在行业基准测试中表现优异。Llama 3.1模型采用自回归语言模型,使用优化的Transformer架构,并通过监督式微调(SFT)和强化学习结合人类反馈(RLHF)来提高模型的有用性和安全性。
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
GPT-4o mini 是 OpenAI 推出的一款成本效益极高的小型智能模型。它在多模态推理和文本智能方面超越了其他小型模型,并支持与 GPT-4o 相同的语言范围。该模型在数学推理和编码任务上表现出色,能够处理大量上下文信息,并支持快速、实时的文本响应。GPT-4o mini 的推出旨在使智能技术更广泛地应用于各种应用场景,降低成本,提高可访问性。
Gemma-2-9b-it是由Google开发的一系列轻量级、最先进的开放模型,基于与Gemini模型相同的研究和技术构建而成。这些模型是文本到文本的解码器仅大型语言模型,以英文提供,适用于问答、摘要和推理等多样化文本生成任务。由于其相对较小的尺寸,可以在资源有限的环境中部署,如笔记本电脑、桌面或个人云基础设施,使先进的AI模型更加普及,促进创新。
Gemma 2是Google开发的一系列轻量级、先进的开放模型,基于与Gemini模型相同的研究和技术构建。它们是文本到文本的解码器仅大型语言模型,仅提供英文版本,具有开放的权重,适用于预训练变体和指令调整变体。Gemma模型非常适合各种文本生成任务,包括问答、摘要和推理。其相对较小的体积使其能够部署在资源有限的环境中,如笔记本电脑、桌面或您自己的云基础设施,使先进的AI模型的访问民主化,并帮助为每个人促进创新。
Fugaku-LLM是一个由Fugaku-LLM团队开发的人工智能语言模型,专注于文本生成领域。它通过先进的机器学习技术,能够生成流畅、连贯的文本,适用于多种语言和场景。Fugaku-LLM的主要优点包括其高效的文本生成能力、对多种语言的支持以及持续的模型更新,以保持技术领先。该模型在社区中拥有广泛的应用,包括但不限于写作辅助、聊天机器人开发和教育工具。
Qwen1.5-110B是Qwen1.5系列中规模最大的模型,拥有1100亿参数,支持多语言,采用高效的Transformer解码器架构,并包含分组查询注意力(GQA),在模型推理时更加高效。它在基础能力评估中与Meta-Llama3-70B相媲美,在Chat评估中表现出色,包括MT-Bench和AlpacaEval 2.0。该模型的发布展示了在模型规模扩展方面的巨大潜力,并且预示着未来通过扩展数据和模型规模,可以获得更大的性能提升。
abab 6.5系列包含两个模型:abab 6.5和abab 6.5s,均支持200k tokens的上下文长度。abab 6.5包含万亿参数,而abab 6.5s则更高效,能在1秒内处理近3万字的文本。它们在知识、推理、数学、编程、指令遵从等核心能力测试中表现出色,接近行业领先水平。
JetMoE-8B是一个开源的大型语言模型,通过使用公共数据集和优化的训练方法,以低于10万美元的成本实现了超越Meta AI LLaMA2-7B的性能。该模型在推理时仅激活22亿参数,大幅降低了计算成本,同时保持了优异的性能。
360Zhinao是由奇虎360开源的一系列7B规模的智能语言模型,包括基础模型和三个不同长度上下文的对话模型。这些模型经过大规模中英文语料预训练,在自然语言理解、知识、数学、代码生成等多种任务上表现出色,并具有强大的长文本对话能力。模型可用于各种对话式应用的开发和部署。
Grok-1.5是一种先进的大型语言模型,具有出色的长文本理解和推理能力。它可以处理高达128,000个标记的长上下文,远超以前模型的能力。在数学和编码等任务中,Grok-1.5表现出色,在多个公认的基准测试中获得了极高的分数。该模型建立在强大的分布式训练框架之上,确保高效和可靠的训练过程。Grok-1.5旨在为用户提供强大的语言理解和生成能力,助力各种复杂的语言任务。
Jamba是一款基于SSM-Transformer混合架构的开放语言模型,提供顶级的质量和性能表现。它融合了Transformer和SSM架构的优势,在推理基准测试中表现出色,同时在长上下文场景下提供3倍的吞吐量提升。Jamba是目前该规模下唯一可在单GPU上支持14万字符上下文的模型,成本效益极高。作为基础模型,Jamba旨在供开发者微调、训练并构建定制化解决方案。
DBRX是一个由Databricks的Mosaic研究团队构建的通用大型语言模型(LLM),在标准基准测试中表现优于所有现有开源模型。它采用Mixture-of-Experts (MoE)架构,使用362亿个参数,拥有出色的语言理解、编程、数学和逻辑推理能力。DBRX旨在推动高质量开源LLM的发展,并且便于企业根据自身数据对模型进行定制。Databricks为企业用户提供了交互式使用DBRX、利用其长上下文能力构建检索增强系统,并基于自身数据构建定制DBRX模型的能力。
苹果发布了自己的大语言模型MM1,这是一个最高有30B规模的多模态LLM。通过预训练和SFT,MM1模型在多个基准测试中取得了SOTA性能,展现了上下文内预测、多图像推理和少样本学习能力等吸引人的特性。
Sailor是一套专为东南亚地区定制的开放语言模型,支持印尼语、泰语、越南语、马来语和老挝语等。这些模型通过精心的数据策划,旨在理解和生成东南亚地区多样化的语言文本。Sailor模型基于Qwen 1.5构建,包含从0.5B到7B不同大小的模型版本,以满足不同需求。在东南亚语言的任务中,如问答、常识推理、阅读理解等,Sailor展现出强大的性能。
Meta Llama 3是Meta公司推出的新一代开源大型语言模型,性能卓越,在多项行业基准测试中表现出色。它可支持广泛的使用场景,包括改善推理能力等新功能。该模型将在未来支持多语种、多模态,提供更长的上下文窗口和整体性能提升。Llama 3秉承开放理念,将被部署在主要云服务、托管和硬件平台上,供开发者和社区使用。
Gemma-7B是由谷歌开发的一个具有70亿参数的大型预训练语言模型,旨在提供强大的自然语言处理能力。它能够理解和生成文本,支持多种语言,适用于多种应用场景。
Gemma-2b是谷歌推出的开源预训练语言模型系列,提供了多个不同规模的变体。它可以生成高质量的文本,广泛应用于问答、摘要、推理等领域。相比其他同类模型,它模型规模较小,可以部署在不同的硬件环境中。Gemma系列追求安全、高效的人工智能技术,使更多研究者和开发者可以接触前沿的语言模型技术。
Baichuan2-192K推出全球最长上下文窗口大模型Baichuan2-192K,一次可输入35万字超越Claude2。Baichuan2-192K不仅在上下文窗口长度上超越Claude2,在长窗口文本生成质量、长上下文理解以及长文本问答、摘要等方面的表现也全面领先Claude2。Baichuan2-192K通过算法和工程的极致优化,实现了窗口长度和模型性能之间的平衡,做到了窗口长度和模型性能的同步提升。Baichuan2-192K已经开放了API接口,提供给企业用户,并已经在法律、媒体、金融等行业落地应用。
探索 生产力 分类下的其他子分类
1361 个工具
904 个工具
767 个工具
619 个工具
607 个工具
431 个工具
406 个工具
398 个工具
AI语言模型 是 生产力 分类下的热门子分类,包含 27 个优质AI工具