-->
Intellecs.AI 是一款简化信息获取的工具,提供准确的摘要和智能提问功能,最大限度地提高工作效率和学习流程。快速查找和定位 PDF 文件中的信息,轻松提问并获得准确的答案。通过 Intellecs.AI,告别信息过载,轻松掌握任何文档的要点。
读书简化
发现更多类似的优质AI工具
Doctrine是一个简单但功能强大的API,可以将知识从数据库、网站、文件等多种来源中提取,并将其嵌入到高维向量空间中。它支持问答、分区和扩展,提供多种定价计划。适用于个人、中小型企业和整个组织。
Poe 是一个 AI 聊天工具,让您可以提问并获得即时回答,还可以进行双向对话。它提供了 GPT-4、gpt-3.5-turbo、Anthropic 的 Claude 等各种不同的机器人。
Antimetal 是一款基于人工智能技术的产品,提供 AWS 文档的智能搜索和聊天功能。它可以帮助用户更轻松地查找和理解 AWS 文档,并根据用户的提问提供实时的帮助和解答。Antimetal 可以大大提高开发者的工作效率,节省时间和精力。
文心一言是百度全新一代知识增强大语言模型,能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。基于飞桨深度学习平台和文心知识增强大模型,持续从海量数据和大规模知识中融合学习具备知识增强、检索增强和对话增强的技术特色。期待你的反馈,帮助文心一言持续取得进步。
通义千问是一个专门响应人类指令的大模型。它具有强大的语义理解和语言生成能力,可以回答各种问题、提供实用信息、帮助解决问题。通义千问的优势在于准确性高、响应速度快、支持多种语言、功能丰富。定价方面,我们提供免费试用和付费订阅两种模式。通义千问定位于成为人类的智能助手,帮助用户提高工作效率、解决问题、获取知识。
VoxScript 是由 Allwire 开发的一款先进的 AI 插件,利用自然语言处理技术,革新了探索和分析数字内容的方式。它可以与各种在线平台无缝集成,为用户提供实时信息、视频分析、股市趋势分析等功能。VoxScript 的核心是 OpenAI 最先进的语言模型,经过大规模、多样化的数据集训练,提供无与伦比的准确性和多功能性。无论您是内容创作者、金融分析师,还是对科学技术等领域充满好奇心的学习者,VoxScript 都是您获取有价值见解、扩展知识的理想助手。
Radal是一个无代码平台,可使用您自己的数据微调小型语言模型,适用于需要定制人工智能而不涉及MLOps复杂性的初创公司、研究人员和企业。其主要优点是使用户能够快速训练和部署自定义语言模型,降低了技术门槛,节省时间成本。
Gitee AI 汇聚最新最热 AI 模型,提供模型体验、推理、训练、部署和应用的一站式服务,提供充沛算力,定位为中国最好的 AI 社区。
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
OpenAI Embedding Models是一系列新型嵌入模型,包括两个全新的嵌入模型和更新的GPT-4 Turbo预览模型、GPT-3.5 Turbo模型以及文本内容审核模型。默认情况下,发送到OpenAI API的数据不会用于训练或改进OpenAI模型。新的嵌入模型具有更低的定价,包括更小、高效的text-embedding-3-small模型和更大、更强大的text-embedding-3-large模型。嵌入是表示自然语言或代码等内容中概念的一系列数字。嵌入使得机器学习模型和其他算法更容易理解内容之间的关系,并执行聚类或检索等任务。它们为ChatGPT和Assistants API中的知识检索以及许多检索增强生成(RAG)开发工具提供支持。text-embedding-3-small是新的高效嵌入模型,相比其前身text-embedding-ada-002模型,性能更强,MIRACL的平均分数从31.4%提升至44.0%,而在英语任务(MTEB)的平均分数从61.0%提升至62.3%。text-embedding-3-small的定价也比之前的text-embedding-ada-002模型降低了5倍,从每千个标记的价格$0.0001降至$0.00002。text-embedding-3-large是新一代更大的嵌入模型,能够创建高达3072维的嵌入。性能更强,MIRACL的平均分数从31.4%提升至54.9%,而在MTEB的平均分数从61.0%提升至64.6%。text-embedding-3-large的定价为$0.00013/千个标记。此外,我们还支持缩短嵌入的原生功能,使得开发者可以在性能和成本之间进行权衡。
Adept Fuyu-Heavy是一款新型的多模态模型,专为数字代理设计。它在多模态推理方面表现出色,尤其在UI理解方面表现出色,同时在传统的多模态基准测试中也表现良好。此外,它展示了我们可以扩大Fuyu架构并获得所有相关好处的能力,包括处理任意大小/形状的图像和有效地重复使用现有的变压器优化。它还具有匹配或超越相同计算级别模型性能的能力,尽管需要将部分容量用于图像建模。
Meta-Prompting是一种有效的脚手架技术,旨在增强语言模型(LM)的功能。该方法将单个LM转化为一个多方位的指挥者,擅长管理和整合多个独立的LM查询。通过使用高层指令,元提示引导LM将复杂任务分解为更小、更易管理的子任务。然后,这些子任务由相同LM的不同“专家”实例处理,每个实例都根据特定的定制指令操作。这个过程的核心是LM本身,作为指挥者,它确保这些专家模型的输出之间的无缝沟通和有效整合。它还利用其固有的批判性思维和强大的验证过程来完善和验证最终结果。这种协作提示方法使单个LM能够同时充当全面的指挥者和多样化专家团队,显著提升其在各种任务中的性能。元提示的零射击、任务无关性质极大地简化了用户交互,无需详细的任务特定指令。此外,我们的研究表明,外部工具(如Python解释器)与元提示框架能够无缝集成,从而扩大了其适用性和效用。通过与GPT-4的严格实验,我们证明了元提示优于传统脚手架方法:在所有任务中取平均值,包括24点游戏、一步将军和Python编程难题,使用Python解释器功能的元提示比标准提示高出17.1%,比专家(动态)提示高出17.3%,比多人格提示高出15.2%。
WARM是一种通过加权平均奖励模型(WARM)来对齐大型语言模型(LLMs)与人类偏好的解决方案。首先,WARM对多个奖励模型进行微调,然后在权重空间中对它们进行平均。通过加权平均,WARM相对于传统的预测集成方法提高了效率,同时改善了在分布转移和偏好不一致性下的可靠性。我们的实验表明,WARM在摘要任务上的表现优于传统方法,使用最佳N和RL方法,WARM提高了LLM预测的整体质量和对齐性。
ReFT是一种增强大型语言模型(LLMs)推理能力的简单而有效的方法。它首先通过监督微调(SFT)对模型进行预热,然后使用在线强化学习,具体来说是本文中的PPO算法,进一步微调模型。ReFT通过自动对给定问题进行大量推理路径的采样,并从真实答案中自然地得出奖励,从而显著优于SFT。ReFT的性能可能通过结合推理时策略(如多数投票和重新排名)进一步提升。需要注意的是,ReFT通过学习与SFT相同的训练问题而获得改进,而无需依赖额外或增强的训练问题。这表明ReFT具有更强的泛化能力。
Contrastive Preference Optimization是一种用于机器翻译的创新方法,通过训练模型避免生成仅仅足够而不完美的翻译,从而显著提高了ALMA模型的性能。该方法在WMT'21、WMT'22和WMT'23测试数据集上可以达到或超过WMT竞赛获胜者和GPT-4的性能。