💻 编程

Crawl4AI

Crawl4AI是一个强大的、免费的网页爬取服务,旨在从网页中提取有用信息,并使其对大型语言模型(LLMs)和AI应用可用。它支持高效的网页爬取,提供对LLM友好的输出格式,如JSON、清理过的HTML和Markdown,支持同时爬取多个URL,并完全免费且开源。

#数据提取
#AI集成
#爬虫
#网页分析
定价: 免费
Crawl4AI

产品详情

开源的、专为大型语言模型优化的网页爬虫与抓取工具。

主要功能

1
高效的网页爬取能力,提取网站中的有价值数据。
2
支持LLM友好的输出格式,如JSON、清理过的HTML和Markdown。
3
支持同时爬取多个URL。
4
能够替换媒体标签为ALT文本。
5
完全免费使用,且代码开源。

使用教程

1
步骤1:访问Crawl4AI的网页应用或克隆代码库到本地。
2
步骤2:如果是作为库使用,通过pip安装Crawl4AI。
3
步骤3:设置环境变量,包括数据库路径和API密钥。
4
步骤4:在Python脚本中导入必要的模块,并创建WebCrawler实例。
5
步骤5:使用UrlModel定义要爬取的URL,并调用fetch_page或fetch_pages方法进行数据爬取。
6
步骤6:处理爬取结果,根据需要提取JSON、HTML或Markdown格式的数据。
7
步骤7:运行本地服务器(如果选择此部署方式),并通过API接口发送请求以爬取网页数据。

适用人群

AI开发者和数据科学家:可以利用Crawl4AI快速获取网页数据,用于机器学习模型训练或数据分析。

网站管理员和内容创作者:通过Crawl4AI提取网站内容,优化SEO或进行内容分析。

研究人员:在进行网络信息研究时,使用Crawl4AI收集和整理相关数据。

使用示例

使用Crawl4AI从新闻网站提取最新文章进行内容分析。

将Crawl4AI集成到自动化系统中,定期抓取特定网页的数据。

利用Crawl4AI为AI聊天机器人提供实时的网页信息。

快速访问

访问官网 →

所属分类

💻 编程
› AI数据挖掘
› AI爬虫

相关推荐

发现更多类似的优质AI工具

Prisma Optimize

Prisma Optimize

Prisma Optimize是一个利用人工智能技术来分析和优化数据库查询的工具。它通过提供深入的洞察和可操作的建议来提高数据库查询效率,从而加速应用程序的运行。Prisma Optimize支持多种数据库,包括PostgreSQL、MySQL、SQLite、SQL Server、CockroachDB、PlanetScale和Supabase等,能够无缝集成到现有的技术栈中,无需进行大规模的修改或迁移。产品的主要优点包括提高数据库性能、减少查询延迟、优化查询模式等,对于开发者和数据库管理员来说,这是一个强大的工具,可以帮助他们更有效地管理和优化数据库。

团队协作 AI分析
💻 编程
Tabled

Tabled

Tabled是一个用于检测和提取表格的Python库,它使用surya来识别PDF中的表格,识别行列,并能够将单元格格式化为Markdown、CSV或HTML。这个工具对于数据科学家和研究人员来说非常有用,他们经常需要从PDF文档中提取表格数据以进行进一步的分析。Tabled的主要优点包括高准确性的表格检测和提取能力,支持多种输出格式,以及易于使用的命令行界面。此外,它还提供了一个交互式的APP,允许用户直观地尝试在图像或PDF文件上使用Tabled。

自动化 机器学习
💻 编程
Knowledge Table

Knowledge Table

Knowledge Table 是一个开源工具包,旨在简化从非结构化文档中提取和探索结构化数据的过程。它通过自然语言查询界面,使用户能够创建结构化的知识表示,如表格和图表。该工具包具有可定制的提取规则、精细调整的格式化选项,并通过UI显示的数据溯源,适应多种用例。它的目标是为业务用户提供熟悉的电子表格界面,同时为开发者提供灵活且高度可配置的后端,确保与现有RAG工作流程的无缝集成。

自然语言处理 开源
💻 编程
VARAG

VARAG

VARAG是一个支持多种检索技术的系统,优化了文本、图像和多模态文档检索的不同用例。它通过将文档页面作为图像嵌入,简化了传统的检索流程,并使用先进的视觉语言模型进行编码,提高了检索的准确性和效率。VARAG的主要优点在于它能够处理复杂的视觉和文本内容,为文档检索提供强大的支持。

多模态 文档处理
💻 编程
GraphReasoning

GraphReasoning

GraphReasoning是一个利用生成式人工智能技术将1000篇科学论文转化为知识图谱的项目。通过结构化分析,计算节点度、识别社区和连接性,评估聚类系数和关键节点的介数中心性,揭示了迷人的知识架构。该图谱具有无标度性质,高度互联,可用于图推理,利用传递性和同构性质揭示前所未有的跨学科关系,用于回答问题、识别知识空白、提出前所未有的材料设计和预测材料行为。

人工智能 知识图谱
💻 编程
AgentRE

AgentRE

AgentRE是一个基于代理的框架,专门设计用于在复杂信息环境中进行关系抽取。它通过模拟智能代理的行为,能够高效地处理和分析大规模数据集,从而识别和提取实体之间的关系。该技术在自然语言处理和信息检索领域具有重要意义,尤其是在需要处理大量非结构化数据的场景中。AgentRE的主要优点包括其高度的可扩展性、灵活性以及对复杂数据结构的处理能力。该框架是开源的,允许研究人员和开发者自由使用和修改,以适应不同的应用需求。

自然语言处理 信息检索
💻 编程
magic-html

magic-html

magic-html是一个Python库,旨在简化从HTML中提取主体区域内容的过程。它提供了一套工具,能够轻松地从HTML中提取主体区域内容,无论处理的是复杂的HTML结构还是简单的网页,这个库都旨在为用户提供一个便捷高效的接口。它支持多模态抽取,支持多种版面extractor,包括文章、论坛和微信文章,还支持latex公式提取转换。

Python库 数据抽取
💻 编程
TAG-Bench

TAG-Bench

TAG-Bench是一个用于评估和研究自然语言处理模型在回答数据库查询方面性能的基准测试。它基于BIRD Text2SQL基准测试构建,并通过增加对世界知识或超越数据库中明确信息的语义推理要求,提高了查询的复杂性。TAG-Bench旨在推动AI和数据库技术的融合,通过模拟真实的数据库查询场景,为研究者提供了一个挑战现有模型的平台。

自然语言处理 基准测试
💻 编程
CyberScraper 2077

CyberScraper 2077

CyberScraper 2077是一款基于AI的网页爬虫工具,它利用OpenAI和Ollama等大型语言模型(LLM)来智能解析网页内容,提供数据提取服务。这款工具不仅拥有用户友好的图形界面,还支持多种数据导出格式,包括JSON、CSV、HTML、SQL和Excel。此外,它还具备隐形模式,以降低被检测为机器人的风险,以及遵循robots.txt和网站政策的道德爬取特性。

llm openai
💻 编程
Triplex

Triplex

Triplex是一个创新的开源模型,能够将大量非结构化数据转换为结构化数据,其在知识图谱构建方面的表现超越了gpt-4o,且成本仅为其十分之一。它通过高效的将非结构化文本转换为知识图谱的构建基础——语义三元组,大幅降低了知识图谱的生成成本。

开源 知识图谱
💻 编程
Datalore

Datalore

Datalore是一个集成了Anthropic的Claude API和多种数据分析库的AI驱动的数据分析工具。它提供了一个交互式界面,使用户能够使用自然语言命令执行数据分析任务。

AI 自然语言处理
💻 编程
Korvus

Korvus

Korvus是一个基于Postgres构建的搜索SDK,它将整个RAG(检索增强生成)流程统一到单一的数据库查询中。它提供了高性能、可定制的搜索能力,同时最小化了基础设施的考虑。Korvus利用PostgresML的pgml扩展和pgvector扩展,将RAG流程压缩在Postgres内部。它支持多语言SDK,包括Python、JavaScript、Rust和C,允许开发者无缝集成到现有的技术栈中。

AI 自然语言处理
💻 编程
Crawlee

Crawlee

Crawlee 是一个用于构建可靠爬虫的 Python 网络爬虫和浏览器自动化库,提取数据用于AI、LLMs、RAG或GPTs。它提供了统一的接口来处理 HTTP 和无头浏览器爬取任务,支持自动并行爬取,基于系统资源进行调整。Crawlee 用 Python 编写,包含类型提示,增强了开发体验并减少了错误。它具备自动重试、集成代理轮换和会话管理、可配置的请求路由、持久化 URL 队列、可插拔的存储选项等功能。相较于 Scrapy,Crawlee 提供了对无头浏览器爬取的原生支持,拥有简洁优雅的接口,并且完全基于标准的异步 IO。

python automation
💻 编程
LAMDA-TALENT

LAMDA-TALENT

LAMDA-TALENT是一个综合的表格数据分析工具箱和基准测试平台,它集成了20多种深度学习方法、10多种传统方法以及300多个多样化的表格数据集。该工具箱旨在提高模型在表格数据上的性能,提供强大的预处理能力,优化数据学习,并支持用户友好和适应性强的操作,适用于新手和专家数据科学家。

机器学习 深度学习
💻 编程
APIGen

APIGen

APIGen是一个自动化的数据生成管道,旨在为函数调用应用生成可验证的高质量数据集。该模型通过三个层次的验证过程确保数据的可靠性和正确性,包括格式检查、实际函数执行和语义验证。APIGen能够规模化、结构化地生成多样化的数据集,并通过实际执行API来验证生成的函数调用的正确性,这对于提升函数调用代理模型的性能至关重要。

自动化 自然语言处理
💻 编程
DB-GPT

DB-GPT

DB-GPT是一个开源的AI原生数据应用开发框架,利用AWEL(Agentic Workflow Expression Language)和代理(agent)技术,简化了大型模型应用与数据的结合。它通过多模型管理、Text2SQL效果优化、RAG框架优化、多代理框架协作等技术能力,使企业和开发者能够以更少的代码构建定制化应用。DB-GPT在数据3.0时代,基于模型和数据库,为构建企业级报告分析和业务洞察提供了基础数据智能技术。

安全 数据库
💻 编程